Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

ALMA detection and astrobiological potential of vinyl cyanide on Titan

Science Advances American Association for the Advancement of Science 3:7 (2017) e1700022

Authors:

MY Palmer, MA Cordiner, CA Nixon, SB Charnley, NA Teanby, Z Kisiel, Patrick Irwin, MJ Mumma

Abstract:

Recent simulations have indicated that vinyl cyanide is the best candidate molecule for the formation of cell membranes/vesicle structures in Titan's hydrocarbon-rich lakes and seas. Although the existence of vinyl cyanide (C2H3CN) on Titan was previously inferred using Cassini mass spectrometry, a definitive detection has been lacking until now. We report the first spectroscopic detection of vinyl cyanide in Titan's atmosphere, obtained using archival data from the Atacama Large Millimeter/submillimeter Array (ALMA), collected from February to May 2014. We detect the three strongest rotational lines of C2H3CN in the frequency range of 230 to 232 GHz, each with >4σ confidence. Radiative transfer modeling suggests that most of the C2H3CN emission originates at altitudes of ≳200 km, in agreement with recent photochemical models. The vertical column densities implied by our best-fitting models lie in the range of 3.7 × 1013 to 1.4 × 1014 cm-2. The corresponding production rate of vinyl cyanide and its saturation mole fraction imply the availability of sufficient dissolved material to form ~107 cell membranes/cm3 in Titan's sea Ligeia Mare.
More details from the publisher
Details from ORA
More details
More details

Independent evolution of stratospheric temperatures in Jupiter's northern and southern auroral regions from 2014 to 2016

Geophysical Research Letters American Geophysical Union 44:11 (2017) 5345-5354

Authors:

JA Sinclair, GS Orton, TK Greathouse, LN Fletcher, C Tao, GR Gladstone, A Adriani, W Dunn, JI Moses, V Hue, Patrick Irwin, H Melin, RS Giles

Abstract:

We present retrievals of the vertical temperature profile of Jupiter's high latitudes from Infrared Telescope Facility-Texas Echelon Cross Echelle Spectrograph measurements acquired on 10–11 December 2014 and 30 April to 1 May 2016. Over this time range, 1 mbar temperature in Jupiter's northern and southern auroral regions exhibited independent evolution. The northern auroral hot spot exhibited negligible net change in temperature at 1 mbar and its longitudinal position remained fixed at 180°W (System III), whereas the southern auroral hot spot exhibited a net increase in temperature of 11.1 ± 5.2 K at 0.98 mbar and its longitudinal orientation moved west by approximately 30°. This southern auroral stratospheric temperature increase might be related to (1) near-contemporaneous brightening of the southern auroral ultraviolet/near-infrared H + 3 emission measured by the Juno spacecraft and (2) an increase in the solar dynamical pressure in the preceding 3 days. We therefore suggest that 1 mbar temperature in the southern auroral region might be modified by higher-energy charged particle precipitation.
More details from the publisher
Details from ORA
More details
More details

The PanCam instrument for the ExoMars rover

Astrobiology Mary Ann Liebert 17:6-7 (2017) 511-541

Authors:

AJ Coates, R Jaumann, AD Griffiths, CE Leff, N Schmitz, J-L Josset, G Paar, M Gunn, E Hauber, CR Cousins, RE Cross, P Grindrod, JC Bridges, M Balme, S Gupta, IA Crawford, Patrick Irwin, R Stabbins, D Tirsch, JL Vago, T Theodorou, M Caballo-Perucha, GR Osinski

Abstract:

The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars-ExoMars-Instrumentation-Geology-Atmosphere-Exobiology-Context. Astrobiology 17, 511-541.
More details from the publisher
Details from ORA
More details
More details

A precise optical transmission spectrum of the inflated exoplanet WASP-52b

Monthly Notices of the Royal Astronomical Society Oxford University Press 470:1 (2017) 742-754

Authors:

T Louden, PJ Wheatley, Patrick Irwin, J Kirk, I Skillen

Abstract:

We have measured a precise optical transmission spectrum forWASP-52b, a highly inflated hot Jupiter with an equilibrium temperature of 1300 K. Two transits of the planet were observed spectroscopically at low resolution with the auxiliary-port camera on the William Herschel Telescope, covering a wide range of 4000-8750 Å. We use a Gaussian process approach to model the correlated noise in the multiwavelength light curves, resulting in a high precision relative transmission spectrum with errors of the order of a pressure scaleheight.We attempted to fit a variety of different representative model atmospheres to the transmission spectrum, but did not find a satisfactory match to the entire spectral range. For the majority of the covered wavelength range (4000-7750 Å), the spectrum is flat, and can be explained by an optically thick and grey cloud layer at 0.1 mbar, but this is inconsistent with a slightly deeper transit at wavelengths > 7750 Å.We were not able to find an obvious systematic source for this feature, so this opacity may be the result of an additional unknown absorber.
More details from the publisher
Details from ORA
More details
More details

Moist convection and the 2010–2011 revival of Jupiter's South Equatorial Belt

Icarus Elsevier 286 (2017) 94-117

Authors:

Leigh N Fletcher, GS Orton, JH Rogers, RS Giles, AV Payne, Patrick Irwin, M Vedovato

Abstract:

The transformation of Jupiter's South Equatorial Belt (SEB) from its faded, whitened state in 2009-2010 (Fletcher et al., 2011b) to its normal brown appearance is documented via comparisons of thermal-infrared (5–20  µm) and visible-light imaging between November 2010 and November 2011. The SEB revival consisted of convective eruptions triggered over ∼100 days, potentially powered by the latent heat released by the condensation of water. The plumes rise from the water cloud base and ultimately diverge and cool in the stably-stratified upper troposphere. Thermal-IR images from the Very Large Telescope (VLT) were acquired 2 days after the SEB disturbance was first detected as a small white spot by amateur observers on November 9th 2010. Subsequent images over several months revealed the cold, putatively anticyclonic and cloudy plume tops (area 2.5 × 106 km2) surrounded by warm, cloud-free conditions at their peripheries due to subsidence. The latent heating was not directly detectable in the 5-20 µm range. The majority of the plumes erupted from a single source near 140−160∘W, coincident with the remnant cyclonic circulation of a brown barge that had formed during the fade. The warm remnant of the cyclone could still be observed in IRTF imaging 5 days before the November 9th eruption. Additional plumes erupted from the leading edge of the central disturbance immediately east of the source, which propagated slowly eastwards to encounter the Great Red Spot. The tropospheric plumes were sufficiently vigorous to excite stratospheric thermal waves over the SEB with a 20−30∘ longitudinal wavelength and 5-6 K temperature contrasts at 5 mbar, showing a direct connection between moist convection and stratospheric wave activity. The subsidence and compressional heating of dry, unsaturated air warmed the troposphere (particularly to the northwest of the central branch of the revival) and removed the aerosols that had been responsible for the fade. Dark, cloud-free lanes west of the plumes were the first to show the colour change, and elongated due to the zonal windshear to form the characteristic ‘S-shape’ of the revival complex. The aerosol-free air was redistributed and mixed throughout the SEB by the zonal flow, following a westward-moving southern branch and an eastward-moving northern branch that revived the brown colouration over ∼200 days. The transition from the cool conditions of the SEBZ during the fade to the revived SEB caused a 2–4 K rise in 500-mbar temperatures (leaving a particularly warm southern SEB) and a reduction of aerosol opacity by factors of 2–3. Newly-cleared gaps in the upper tropospheric aerosol layer appeared different in filters sensing the ∼700-mbar cloud deck and the 2–3 bar cloud deck, suggesting complex vertical structure in the downdrafts. The last stage of the revival was the re-establishment of normal convective activity northwest of the GRS in September 2011, ∼840 days after the last occurrence in June 2009. Moist convection may therefore play an important role in controlling the timescale and atmospheric variability during the SEB life cycle.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • Current page 44
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet