ALMA detection and astrobiological potential of vinyl cyanide on Titan
Science Advances American Association for the Advancement of Science 3:7 (2017) e1700022
Abstract:
Recent simulations have indicated that vinyl cyanide is the best candidate molecule for the formation of cell membranes/vesicle structures in Titan's hydrocarbon-rich lakes and seas. Although the existence of vinyl cyanide (C2H3CN) on Titan was previously inferred using Cassini mass spectrometry, a definitive detection has been lacking until now. We report the first spectroscopic detection of vinyl cyanide in Titan's atmosphere, obtained using archival data from the Atacama Large Millimeter/submillimeter Array (ALMA), collected from February to May 2014. We detect the three strongest rotational lines of C2H3CN in the frequency range of 230 to 232 GHz, each with >4σ confidence. Radiative transfer modeling suggests that most of the C2H3CN emission originates at altitudes of ≳200 km, in agreement with recent photochemical models. The vertical column densities implied by our best-fitting models lie in the range of 3.7 × 1013 to 1.4 × 1014 cm-2. The corresponding production rate of vinyl cyanide and its saturation mole fraction imply the availability of sufficient dissolved material to form ~107 cell membranes/cm3 in Titan's sea Ligeia Mare.Independent evolution of stratospheric temperatures in Jupiter's northern and southern auroral regions from 2014 to 2016
Geophysical Research Letters American Geophysical Union 44:11 (2017) 5345-5354
Abstract:
We present retrievals of the vertical temperature profile of Jupiter's high latitudes from Infrared Telescope Facility-Texas Echelon Cross Echelle Spectrograph measurements acquired on 10–11 December 2014 and 30 April to 1 May 2016. Over this time range, 1 mbar temperature in Jupiter's northern and southern auroral regions exhibited independent evolution. The northern auroral hot spot exhibited negligible net change in temperature at 1 mbar and its longitudinal position remained fixed at 180°W (System III), whereas the southern auroral hot spot exhibited a net increase in temperature of 11.1 ± 5.2 K at 0.98 mbar and its longitudinal orientation moved west by approximately 30°. This southern auroral stratospheric temperature increase might be related to (1) near-contemporaneous brightening of the southern auroral ultraviolet/near-infrared H + 3 emission measured by the Juno spacecraft and (2) an increase in the solar dynamical pressure in the preceding 3 days. We therefore suggest that 1 mbar temperature in the southern auroral region might be modified by higher-energy charged particle precipitation.The PanCam instrument for the ExoMars rover
Astrobiology Mary Ann Liebert 17:6-7 (2017) 511-541
Abstract:
The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars-ExoMars-Instrumentation-Geology-Atmosphere-Exobiology-Context. Astrobiology 17, 511-541.A precise optical transmission spectrum of the inflated exoplanet WASP-52b
Monthly Notices of the Royal Astronomical Society Oxford University Press 470:1 (2017) 742-754
Abstract:
We have measured a precise optical transmission spectrum forWASP-52b, a highly inflated hot Jupiter with an equilibrium temperature of 1300 K. Two transits of the planet were observed spectroscopically at low resolution with the auxiliary-port camera on the William Herschel Telescope, covering a wide range of 4000-8750 Å. We use a Gaussian process approach to model the correlated noise in the multiwavelength light curves, resulting in a high precision relative transmission spectrum with errors of the order of a pressure scaleheight.We attempted to fit a variety of different representative model atmospheres to the transmission spectrum, but did not find a satisfactory match to the entire spectral range. For the majority of the covered wavelength range (4000-7750 Å), the spectrum is flat, and can be explained by an optically thick and grey cloud layer at 0.1 mbar, but this is inconsistent with a slightly deeper transit at wavelengths > 7750 Å.We were not able to find an obvious systematic source for this feature, so this opacity may be the result of an additional unknown absorber.Moist convection and the 2010–2011 revival of Jupiter's South Equatorial Belt
Icarus Elsevier 286 (2017) 94-117