Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Modelling the seasonal cycle of Uranus’s colour and magnitude, and comparison with Neptune

Monthly Notices of the Royal Astronomical Society Oxford University Press 527:4 (2024) 11521-11538

Authors:

Patrick Irwin, Jack Dobinson, Arjuna James, Nicholas Teanby, Amy Simon, Leigh Fletcher, Michael Roman, Glenn Orton, Michael Wong, Daniel Toledo, Santiago Pérez-Hoyos, Julie Beck

Abstract:

We present a quantitative analysis of the seasonal record of Uranus’s disc-averaged colour and photometric magnitude in Strömgren b and y filters (centred at 467 and 551 nm, respectively), recorded at the Lowell Observatory from 1950 to 2016, and supplemented with HST/WFC3 observations from 2016 to 2022. We find that the seasonal variations of magnitude can be explained by the lower abundance of methane at polar latitudes combined with a time-dependent increase of the reflectivity of the aerosol particles in layer near the methane condensation level at 1 – 2 bar. This increase in reflectivity is consistent with the addition of conservatively scattering particles to this layer, for which the modelled background haze particles are strongly absorbing at both blue and red wavelengths. We suggest that this additional component may come from a higher proportion of methane ice particles. We suggest that the increase in reflectivity of Uranus in both filters between the equinoxes in 1966 and 2007, noted by previous authors, might be related to Uranus’s distance from the Sun and the production rate of dark photochemical haze products. Finally, we find that although the visible colour of Uranus is less blue than Neptune, due to the increased aerosol thickness on Uranus, and this difference is greatest at Uranus’s solstices, it is much less significant than is commonly believed due to a long-standing misperception of Neptune’s ‘true’ colour. We describe how filter-imaging observations, such as those from Voyager-2/ISS and HST/WFC3, should be processed to yield accurate true colour representations.

More details from the publisher
Details from ORA
More details

Spectral determination of the colour and vertical structure of dark spots in Neptune's atmosphere

ArXiv 2308.12889 (2023)

Authors:

Patrick GJ Irwin, Jack Dobinson, Arjuna James Michael H Wong, Leigh N Fletcher, Michael T Roman, Nicholas A Teanby, Daniel Toledo, Glenn S Orton, Santiago Perez-Hoyos, Agustin Sanchez-Lavega, Lawrence Sromovsky, Amy A Simon, Raul Morales-Juberias, Imke de Pater, Statia L Cook
More details from the publisher
Details from ArXiV

Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including Dark Spots

ArXiv 2201.04516 (2022)

Authors:

Patrick GJ Irwin, Nicholas A Teanby, Leigh N Fletcher, Daniel Toledo, Glenn S Orton, Michael H Wong, Michael T Roman, Santiago Perez-Hoyos, Arjuna James, Jack Dobinson
More details from the publisher
Details from ArXiV

Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere

Nature Astronomy Nature Publishing Group 2:2018 (2018) 420-427

Authors:

Patrick Irwin, Daniel Toledo Carrasco, Ryan Garland, N Teanby, L Fletcher, GS Orton, B Bezard

Abstract:

Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57–1.59 μm with a mole fraction of 0.4–0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4–5.0 times the solar value) in Uranus’s bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of (1.0−2.5)×10−5. The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2–3-bar cloud is likely to be H2S ice.
More details from the publisher
Details from ORA
More details

Latitudinal variations in methane abundance, aerosol opacity and aerosol scattering efficiency in Neptune's atmosphere determined from VLT/MUSE

ArXiv 2310.13525 (2023)

Authors:

Patrick GJ Irwin, Jack Dobinson, Arjuna James, Michael H Wong, Leigh N Fletcher, Michael T Roman, Nicholas A Teanby, Daniel Toledo, Glenn S Orton, Santiago Perez-Hoyos, Agustin Sanchez-Lavega, Amy Simon, Raul Morales-Juberias, Imke de Pater
More details from the publisher
Details from ArXiV

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet