Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Exoplanet atmospheres with EChO: spectral retrievals using EChOSim

Chapter in EChO - Exoplanet Characterisation Observatory, Springer Nature (2017) 109-125

Authors:

JK Barstow, Neil E Bowles, S Aigrain, LN Fletcher, PGJ Irwin, R Varley, E Pascale
More details from the publisher

The Long wave (11–16 μm) spectrograph for the EChO M3 Mission Candidate study

Chapter in EChO - Exoplanet Characterisation Observatory, Springer Nature (2017) 437-447

Authors:

NE Bowles, M Tecza, JK Barstow, JM Temple, PGJ Irwin, LN Fletcher, S Calcutt, J Hurley, M Ferlet, D Freeman
More details from the publisher

Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko.

Science American Association for the Advancement of Science 354:6319 (2016) 1563-1566

Authors:

Gianrico Filacchione, Andrea Raponi, Fabrizio Capaccioni, Mauro Ciarniello, Federico Tosi, Maria T Capria, Maria C De Sanctis, Alessandra Migliorini, Giuseppe Piccioni, Priscilla Cerroni, Maria A Barucci, Sonia Fornasier, Bernard Schmitt, Eric Quirico, Stéphane Erard, Dominique Bockelee-Morvan, Cedric Leyrat, Gabriele Arnold, Vito Mennella, Eleonora Ammannito, Giancarlo Bellucci, Johannes Benkhoff, JP Bibring, Armando Blanco, Maria I Blecka, Robert Carlson, Ulm Carsenty, Luigi Colangeli, Michel Combes, Michael Combi, Jacques Crovisier, Pierre Drossart, Thérèse Encrenaz, Costanzo Federico, Uwe Fink, Sergio Fonti, Marcello Fulchignoni, Wing-Huen Ip, Patrick Irwin, Robert Jaumann, Ekkehard Kuehrt, Yves Langevin, Gianfranco Magni, Thomas McCord, Ljuba Moroz, Stefano Mottola, Ernesto Palomba, Ulrich Schade, Karin Stephan, Fredric Taylor

Abstract:

Carbon dioxide is one of the most abundant species in cometary nuclei, but due to its high volatility CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area, located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80×60 m area is CO2 ice. This exposed ice was observed a short time after exiting from local winter; following the increased illumination, the CO2 ice completely disappeared over about three weeks. We estimate the mass of the sublimated CO2 ice and the depth of the surface eroded layer. The presence of CO2 ice is interpreted as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.
More details from the publisher
Details from ORA
More details
More details

Latitudinal variability in Jupiter's tropospheric disequilibrium species: GeH4, AsH3 and PH3

Icarus Elsevier 289 (2016) 254-269

Authors:

Rohini Giles, L Fletcher, Patrick G Irwin

Abstract:

Jupiter's tropospheric composition is studied using high resolution spatially-resolved 5-mm observation from the CRIRES instrument at the Very Large Telescope. The high resolving power (R=96,000) allows us to spectrally resolve the line shapes of individual molecular species in Jupiter's troposphere and, by aligning the slit north-south along Jupiter's central meridian, we are able to search for any latitudinal variability. Despite the high spectral resolution, we find that there are significant degeneracies between the cloud structure and aerosol scattering properties that complicate the retrievals of tropospheric gaseous abundances and limit conclusions on any belt-zone variability. However, we do find evidence for variability between the equatorial regions of the planet and the polar regions. Arsine (AsH3) and phosphine (PH3) both show an enhancement at high latitudes, while the abundance of germane (GeH4) remains approximately constant. These observations contrast with the theoretical predictions from Wang et al. (2016) and we discuss the possible explanations for this difierence.
More details from the publisher
Details from ORA
More details

A consistent retrieval analysis of 10 Hot Jupiters observed in transmission

(2016)

Authors:

Joanna K Barstow, Suzanne Aigrain, Patrick GJ Irwin, David K Sing
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Current page 42
  • Page 43
  • Page 44
  • Page 45
  • Page 46
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet