Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Sub-Seasonal Variations in Neptune's Stratospheric Infrared Emission from VLT-VISIR, 2006-2018

Copernicus Publications (2024)

Authors:

Michael T Roman, Leigh N Fletcher, Glenn S Orton, Jan Vatant d'Ollone, James A Sinclair, Naomi Rowe-Gurney, Julianne Moses, Patrick GJ Irwin
More details from the publisher

Temporal variations in vertical haze distribution of Jupiter’s Great Red Spot and its surroundings from HST/WFC3 imaging & dynamical interactions with incoming vortices in 202

Copernicus Publications (2024)

Authors:

Asier Anguiano-Arteaga, Santiago Pérez-Hoyos, Agustín Sánchez-Lavega, José Francisco Sanz-Requena, Patrick Irwin
More details from the publisher

The Impact of Scattering Clouds when Studying Exoplanet Emission Spectra with JWST

Copernicus Publications (2024)

Authors:

Jake Taylor, Vivien Parmentier, Michael Line, Graham Lee, Patrick Irwin, Suzanne Aigrain
More details from the publisher

Zonal Profiles of Jupiter's Tropospheric Abundances from Near-Infrared Juno JIRAM Spectroscopy

Copernicus Publications (2024)

Authors:

Henrik Melin, Leigh Fletcher, Patrick Irwin, Davide Grassi
More details from the publisher

Constraining the global composition of D/H and 18O/16O in Martian water from SOFIA/EXES

Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2024) 2919-2932

Authors:

Juan Alday, S Aoki, C DeWitt, Franck Montmessin, J Holmes, M Patel, J Mason, Therese Encrenaz, M Richter, Patrick Irwin, F Daerden, N Terada, H Nakagawa

Abstract:

Isotopic ratios in water vapour carry important information about the water reservoir on Mars. Localised variations in these ratios can inform us about the water cycle and surface-atmosphere exchanges. On the other hand, the global isotopic composition of the atmosphere carries the imprints of the long-term fractionation, providing crucial information about the early water reservoir and its evolution throughout history. Here, we report the analysis of measurements of the D/H and 18O/16O isotopic ratios in water vapour in different seasons (𝐿S = 15◦ , 127◦ , 272◦ , 305◦ ) made with SOFIA/EXES. These measurements, free of telluric absorption, provide a unique tool for constraining the global isotopic composition of Martian water vapour. We find the maximum planetary D/H ratio in our observations during the northern summer (D/H = 5.2 ± 0.2 with respect to the Vienna Standard Mean Ocean Water, VSMOW) and to exhibit relatively small variations throughout the year (D/H = 5.0 ± 0.2 and 4.3 ± 0.4 VSMOW during the northern winter and spring, respectively), which are to first order consistent though noticeably larger than the expectations from condensation-induced fractionation. Our measurements reveal the annually-averaged isotopic composition of water vapour to be consistent with D/H = 5.0 ± 0.2 and 18O/16O = 1.09 ± 0.08 VSMOW. In addition, based on a comparison between the SOFIA/EXES measurements and the predictions from a Global Climate Model, we estimate the D/H in the northern polar ice cap to be ∼5% larger than that in the atmospheric reservoir (D/Hice = 5.3 ± 0.3 VSMOW).
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet