Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Enhancing Observation Quality of Low Contrast Features of Ice Giants using MODIFIED CLEAN Algorithm and SSA-Based Artifact Detection

Copernicus Publications

Authors:

Jack Dobinson, Patrick Irwin
More details from the publisher

How does thermal scattering shape the infrared spectra of cloudy exoplanets? A theoretical framework and consequences for atmospheric retrievals in the JWST era

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)

Authors:

Jake Taylor, Vivien Parmentier, Michael R Line, Graham KH Lee, Patrick GJ Irwin, Suzanne Aigrain

Abstract:

Observational studies of exoplanets are suggestive of an ubiquitous presence of clouds. The current modelling techniques used in emission to account for the clouds tend to require prior knowledge of the cloud condensing species and often do not consider the scattering effects of the cloud. We explore the effects that thermal scattering has on the emission spectra by modelling a suite of hot Jupiter atmospheres with varying cloud single-scattering albedos (SSAs) and temperature profiles. We examine cases ranging from simple isothermal conditions to more complex structures and physically driven cloud modelling. We show that scattering from nightside clouds would lead to brightness temperatures that are cooler than the real atmospheric temperature, if scattering is unaccounted for. We show that scattering can produce spectral signatures in the emission spectrum even for isothermal atmospheres. We identify the retrieval degeneracies and biases that arise in the context of simulated JWST spectra when the scattering from the clouds dominates the spectral shape. Finally, we propose a novel method of fitting the SSA spectrum of the cloud in emission retrievals, using a technique that does not require any prior knowledge of the cloud chemical or physical properties.
More details from the publisher
Details from ORA
More details
Details from ArXiV

ORTIS Design and development report

Authors:

PG Irwin, B Ellison, S Calcutt

Preliminary report on sub-millimetre spectra of Jupiter and Saturn.

Seasonal changes in the vertical structure of ozone in the Martian lower atmosphere and its relationship to water vapour

Authors:

Kevin Olsen, Anna Fedorova, Alexander Trokhimovskiy, Franck Montmessin, Franck Lefèvre, Oleg Korablev, Lucio Baggio, Francois Forget, Ehouarn Millour, Antoine Bierjon, Juan Alday, Colin Wilson, Patrick Irwin, Denis Belyaev, Andrey Patrakeev, Alexey Shakun
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 91
  • Page 92
  • Page 93
  • Page 94
  • Page 95
  • Page 96
  • Current page 97
  • Page 98
  • Page 99
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet