Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Two monopoles of one type and one of another

Journal of High Energy Physics Springer Nature 1999:04 (1999) 029

Authors:

Conor J Houghton, Patrick W Irwin, Arthur J Mountain
More details from the publisher

Cloud structure and composition of Jupiter's atmosphere

Surveys in Geophysics 20:6 (1999) 505-535

Abstract:

The understanding of the composition and cloud structure has advanced greatly in the last few years and in particular was greatly improved upon following the highly successful Pioneer and Voyager missions to that planet. Recently the Galileo spacecraft has gone into orbit about Jupiter and its remote sensing instruments, including the Near Infrared Mapping Spectrometer (NIMS) and the Solid State Imager (SSI), have yielded exciting new details of the spatial and vertical structure of the Jovian clouds and volatiles. At the same time Galileo's entry probe has made the first ever in situ measurements of conditions in the atmosphere. Recent ground-based observations have also added to the body of evidence from which conditions in the Jovian atmosphere may be inferred. This paper aims to review the current understanding of the composition and cloud structure of Jupiter's atmosphere in the light of the new Galileo results and recent ground-based, and earth-orbiting telescope observations.
More details from the publisher
More details

The clouds of Jupiter

Astronomy and Geophysics 40:3 (1999) 321-325

Authors:

F Taylor, P Irwin

Abstract:

The highly organized and brightly coloured cloud structure on the nearest and largest gas giant planet Jupiter has been explored by the Galileo orbiter/probe project, which completed its nominal mission in December 1997. At least four and possibly as many as six distinct layers of haze or cloud, of different composition and at different depths, appear to contribute to the external appearance of the planet at low and mid-latitudes. A model of the properties of these clouds has been developed from the various data and theoretical constrains. Aspects of the global and time variability of the cloud structure, and its coupling with dynamical systems like the Great Red Spot, are also becoming clearer, allowing speculation about their nature and origins. Analyses of the full four-year data set, some of which is still to be acquired, will add further details of the meteorological behaviour of Jupiter's atmosphere.
More details from the publisher

Band parameters and k coefficients for self-broadened ammonia in the range 4000-11000 cm-1

JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 62:2 (1999) 193-204

Authors:

PGJ Irwin, SB Calcutt, K Sihra, FW Taylor, AL Weir, J Ballard, WB Johnston
More details from the publisher

Jovian atmospheric studies with the Galileo near infrared mapping spectrometer: An update

ADV SPACE RES 23:9 (1999) 1623-1632

Authors:

PGJ Irwin, FW Taylor, RW Carlson, KH Baines, A Weir, P Cameron-Smith, S Calcutt, T Encrenaz, P Drossart, M Roos-Serote, E Lellouch

Abstract:

In its first two years of operation since arrival at Jupiter in December 1995, the Near Infrared Mapping spectrometer (NIMS) on the Galileo orbiter spacecraft obtained extensive coverage of the planet, including detailed coverage of the north equatorial belt (NEB) 'hot spot' region and the Great Red Spot. We will present the current state of data analysis including recent results on the abundances and variability of several minor constituents (H2O, CH4, NH3, GeH4, CH3D and PH3) and the cloud structure and morphology. (C) 1999 COSPAR. Published by Elsevier Science Ltd.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 92
  • Page 93
  • Page 94
  • Page 95
  • Current page 96
  • Page 97
  • Page 98
  • Page 99
  • Page 100
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet