Scale invariance and critical balance in electrostatic drift-kinetic turbulence
(2023)
An analytical form of the dispersion function for local linear gyrokinetics in a curved magnetic field
ArXiv 2212.02654 (2022)
Dimits transition in three-dimensional ion-temperature-gradient turbulence
Cambridge University Press 88:5 (2022)
Abstract:
We extend our previous work on the two-dimensional (2-D) Dimits transition in ion-scale turbulence (Ivanov et al., J. Plasma Phys., vol. 86, 2020, 855860502) to include variations along the magnetic field. We consider a three-field fluid model for the perturbations of electrostatic potential, ion temperature, and ion parallel flow in a constant-magnetic-curvature geometry without magnetic shear. It is derived in the cold-ion, long-wavelength asymptotic limit of the gyrokinetic theory. Just as in the 2-D model, a low-transport (Dimits) regime exists and is found to be dominated by a quasistatic staircase-like arrangement of strong zonal flows and zonal temperature. This zonal staircase is formed and maintained by a negative turbulent viscosity for the zonal flows. Unlike the 2-D model, the three-dimensional (3-D) one does not suffer from an unphysical blow up beyond the Dimits threshold where the staircase becomes nonlinearly unstable. Instead, a well-defined finite-amplitude saturated state is established. This qualitative difference between the 2-D and 3-D models is due to the appearance of small-scale ‘parasitic’ modes that exist only if we allow perturbations to vary along the magnetic field lines. These modes extract energy from the large-scale perturbations and provide an effective enhancement of large-scale thermal diffusion, thus aiding the energy transfer from large injection scales to small dissipative ones. We show that in our model, the parasitic modes always favour a zonal-flow-dominated state. In fact, a Dimits state with a zonal staircase is achieved regardless of the strength of the linear drive, provided the system is sufficiently extended along the magnetic field and sufficient parallel resolution is provided.Electromagnetic instabilities and plasma turbulence driven by electron-temperature gradient
Journal of Plasma Physics Cambridge University Press 88:4 (2022) 905880410
Abstract:
Electromagnetic (EM) instabilities and turbulence driven by the electron-temperature gradient (ETG) are considered in a local slab model of a tokamak-like plasma. Derived in a low-beta asymptotic limit of gyrokinetics, the model describes perturbations at scales both larger and smaller than the electron inertial length de, but below the ion Larmor scale ρi, capturing both electrostatic and EM regimes of turbulence. The well-known electrostatic instabilities – slab and curvature-mediated ETG – are recovered, and a new instability is found in the EM regime, called the thermo-Alfvénic instability (TAI). It exists in both a slab version (sTAI, destabilising kinetic Alfvén waves) and a curvature-mediated version (cTAI), which is a cousin of the (electron-scale) kinetic ballooning mode. The cTAI turns out to be dominant at the largest scales covered by the model (greater than de but smaller than ρi), its physical mechanism hinging on the fast equalisation of the total temperature along perturbed magnetic field lines (in contrast to kinetic ballooning mode, which is pressure balanced). A turbulent cascade theory is then constructed, with two energy-injection scales: de, where the drivers are slab ETG and sTAI, and a larger (parallel system size dependent) scale, where the driver is cTAI. The latter dominates the turbulent transport if the temperature gradient is greater than a certain critical value, which scales inversely with the electron beta. The resulting heat flux scales more steeply with the temperature gradient than that due to electrostatic ETG turbulence, giving rise to stiffer transport. This can be viewed as a physical argument in favour of near-marginal steady-state in electron-transport-controlled plasmas (e.g. the pedestal). While the model is simplistic, the new physics that is revealed by it should be of interest to those attempting to model the effect of EM turbulence in tokamak-relevant configurations with high beta and large ETGs.Toroidal and slab ETG instability dominance in the linear spectrum of JET-ILW pedestals
Nuclear Fusion IOP Publishing 60:12 (2020) 126045