Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Jake Taylor (he/him)

Glasstone Fellow

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
jake.taylor@physics.ox.ac.uk
Denys Wilkinson Building, room 463
Personal website
  • About
  • Prizes, awards and recognition
  • Publications

Diversity in the haziness and chemistry of temperate sub-Neptunes

Nature Astronomy Springer Nature (2025) 1-14

Authors:

Pierre-Alexis Roy, Björn Benneke, Marylou Fournier-Tondreau, Louis-Philippe Coulombe, Caroline Piaulet-Ghorayeb, David Lafrenière, Romain Allart, Nicolas B Cowan, Lisa Dang, Doug Johnstone, Adam B Langeveld, Stefan Pelletier, Michael Radica, Jake Taylor, Loïc Albert, René Doyon, Laura Flagg, Ray Jayawardhana, Ryan J MacDonald, Jake D Turner

Abstract:

Recent transit observations of K2-18 b and TOI-270 d revealed strong molecular absorption signatures, lending credence to the idea that temperate sub-Neptunes (equilibrium temperature Teq = 250–400 K) have upper atmospheres mostly free of aerosols. These observations also indicated higher-than-expected CO2 abundances on both planets, implying bulk compositions with high water mass fractions. However, it remains unclear whether these findings hold true for all temperate sub-Neptunes. Here we present the JWST NIRSpec/PRISM 0.7–5.4-μm transmission spectrum of a third temperate sub-Neptune, the 2.4 R⊕ planet LP 791-18 c (Teq = 355 K), which is even more favourable for atmospheric characterization thanks to its small M6 host star. Intriguingly, despite the radius, mass and equilibrium temperature of LP 791-18 c being between those of K2-18 b and TOI-270 d, we find a drastically different transmission spectrum. Although we also detect methane on LP 791-18 c, its transit spectrum is dominated by strong haze scattering and there is no discernible CO2 absorption. Overall, we infer a deep metal-enriched atmosphere (246–415 times solar) for LP 791-18 c, with a CO2-to-CH4 ratio smaller than 0.07 (at 2σ), indicating less H2O in the deep envelope of LP 791-18 c and implying a relatively dry formation inside the water-ice line. These results show that sub-Neptunes that are near analogues in density and temperature can show drastically different aerosols and envelope chemistry and are intrinsically diverse beyond a simple temperature dependence.
More details from the publisher
More details

JWST NIRSpec finds no clear signs of an atmosphere on TOI-1685 b

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2187

Authors:

Chloe E Fisher, Matthew J Hooton, Amélie Gressier, Merlin Zgraggen, Meng Tian, Kevin Heng, Natalie H Allen, Richard D Chatterjee, Brett M Morris, Nicholas W Borsato, Néstor Espinoza, Daniel Kitzmann, Tobias G Meier, Lars A Buchhave, Adam J Burgasser, Brice-Olivier Demory, Mark Fortune, H Jens Hoeijmakers, Raphael Luque, Erik A Meier Valdés, João M Mendonça, Bibiana Prinoth, Alexander D Rathcke, Jake Taylor

Abstract:

Abstract Determining the prevalence of atmospheres on terrestrial planets is a core objective in exoplanetary science. While M dwarf systems offer a promising opportunity, conclusive observations of terrestrial atmospheres have remained elusive, with many yielding flat transmission spectra. We observe four transits of the hot terrestrial planet TOI-1685 b using JWST’s NIRSpec G395H instrument. Combining this with the transit from the previously-observed phase curve of the planet with the same instrument, we perform a detailed analysis to determine the possibility of an atmosphere on TOI-1685 b. From our retrievals, the Bayesian evidence favours a simple flat line model, indicating no evidence for an atmosphere on TOI-1685 b, in line with results from the phase curve analysis. Our results show that hydrogen-dominated atmospheres can be confidently ruled out. For heavier, secondary atmospheres we find a lower limit on the mean molecular weight of ≳ 10, at a significance of ∼5σ. Pure CO2, SO2, H2O, and CH4 atmospheres, or a mixed secondary atmosphere (CO + CO2 + SO2) could explain the data (Δln Z < 3). However, pure CH4 atmospheres may be physically unlikely, and the pure H2O and CO2 cases require a high-altitude cloud, which could also be interpreted as a thin cloud-free atmosphere. We discuss the theoretical possibility for different types of atmosphere on this planet, and consider the effects of atmospheric escape and stellar activity on the system. Though we find that TOI-1685 b is likely a bare rock, this study also highlights the challenges of detecting secondary atmospheres on rocky planets with JWST.
More details from the publisher

Separating Flare and Secondary Atmospheric Signals with RADYN Modeling of Near-infrared JWST Transmission Spectroscopy Observations of TRAPPIST-1

The Astrophysical Journal Letters American Astronomical Society 994:1 (2025) L31

Authors:

Ward S Howard, Adam F Kowalski, Michael Radica, Laura Flagg, Valeriy Vasilyev, Benjamin V Rackham, Guadalupe Tovar Mendoza, Meredith A MacGregor, Alexander I Shapiro, Jake Taylor, Louis-Philippe Coulombe, Olivia Lim, David Lafrenière

Abstract:

Although TRAPPIST-1’s temperate planets have the highest transmission signals of any known system, flares contaminate 50%–70% of transits at the 1000 ppm level, far above 100 ppm secondary atmospheric signals. Efforts to mitigate flare contamination and assess impacts on radiation environments are each hampered by a lack of empirical spectral analysis and physics-based modeling. We present spectrotemporal analysis and radiative-hydrodynamic modeling of 5.5 hr of NIRISS and NIRSpec observations of six TRAPPIST-1 flares of 2.2–8.7 × 1030 erg. The flare lines and continua are characterized using grid searches of RADYN beam-heating models spanning 104 times in electron beam parameters. Best-fit models indicate these flares result from moderate-intensity beams with emergent electron fluxes of Fe = 1012 erg s−1 cm−2 and energies ≤37 keV, although all models overpredict the Paschen jump. These models predict X-ray and extreme UV (XUV), far-UV, and near-UV counterparts to the IR peak fluxes of 8.9–28.9 × 1027, 4.3–13.9 × 1026, and 3.4–11.4 × 1027 erg s−1, respectively. Scaling the flare rate into the XUV suggests flaring contributes 1.35 −0.15+2.0× quiescence yr−1. We bin integrations of similar flare effective temperature to construct fiducial flare spectra from 2000 to 4500 K, in order to develop separate empirical and RADYN-based mitigation pipelines. Both pipelines are applied to all 5.5 hr of R = 10 data, resulting in maximum residuals from 1 to 2.8 μm of 100–140 ppm and typical residuals of 54 ± 14 and 65 ± 17 ppm for the empirical and RADYN-based pipelines, respectively. Injection testing supports a 3σ detection capability for CO2 atmospheres with features of 150–250 ppm, with weak evidence (Bayes factor ≈ 3) still obtained at 130 ppm. Our results motivate multiwavelength observations to improve model fidelity and test high-energy predictions.
More details from the publisher
Details from ORA
More details

Precise Constraints on the Energy Budget of WASP-121 b from Its JWST NIRISS/SOSS Phase Curve

The Astronomical Journal IOP Publishing 170:6 (2025) 323

Authors:

Jared Splinter, Louis-Philippe Coulombe, Robert C Frazier, Nicolas B Cowan, Emily Rauscher, Lisa Dang, Michael Radica, Sean Collins, Stefan Pelletier, Romain Allart, Ryan J MacDonald, David Lafrenière, Loïc Albert, Björn Benneke, René Doyon, Ray Jayawardhana, Doug Johnstone, Vigneshwaran Krishnamurthy, Caroline Piaulet-Ghorayeb, Lisa Kaltenegger, Michael R Meyer, Jake Taylor, Jake D Turner

Abstract:

Ultra-hot Jupiters exhibit day-to-night temperature contrasts upwards of 1000 K due to competing effects of strong winds, short radiative timescales, magnetic drag, and H2 dissociation/recombination. Spectroscopic phase curves provide critical insights into these processes by mapping temperature distributions and constraining the planet’s energy budget across different pressure levels. Here, we present the first NIRISS/SOSS phase curve of an ultra-hot Jupiter, WASP-121 b. The instrument’s bandpass [0.6–2.85 μm] captures an estimated 50%–83% of the planet’s bolometric flux, depending on orbital phase, allowing for unprecedented constraints on the planet’s global energy budget; previous measurements with HST/WFC3 and JWST/NIRSpec/G395H captured roughly 20% of the planetary flux. Accounting for the unobserved regions of the spectrum, we estimate effective day- and nightside temperatures of Tday = 2717 ± 17 K and Tnight=1562−19+18 K corresponding to a Bond albedo of AB = 0.277 ± 0.016 and a heat recirculation efficiency of ϵ = 0.246 ± 0.014. Matching the phase-dependent effective temperature with energy balance models yields a similar Bond albedo of 0.3 and a mixed layer pressure of 1 bar consistent with photospheric pressures, but unexpectedly slow winds of 0.2 km s−1, indicative of inefficient heat redistribution. The shorter optical wavelengths of the NIRISS/SOSS Order 2 yield a geometric albedo of Ag=0.093−0.027+0.029 (3σ upper limit of 0.175), reinforcing the unexplained trend of hot Jupiters exhibiting larger Bond than geometric albedos. We also detect near-zero phase curve offsets for wavelengths above 1.5 μm, consistent with inefficient heat transport, while shorter wavelengths potentially sensitive to reflected light show eastward offsets.
More details from the publisher
Details from ORA
More details

Possible Evidence for the Presence of Volatiles on the Warm Super-Earth TOI-270 b

The Astronomical Journal American Astronomical Society 170:4 (2025) 226

Authors:

Louis-Philippe Coulombe, Björn Benneke, Joshua Krissansen-Totton, Alexandrine L’Heureux, Caroline Piaulet-Ghorayeb, Michael Radica, Pierre-Alexis Roy, Eva-Maria Ahrer, Charles Cadieux, Yamila Miguel, Hilke E Schlichting, Elisa Delgado-Mena, Christopher Monaghan, Hanna Adamski, Eshan Raul, Ryan Cloutier, Thaddeus D Komacek, Jake Taylor, Cyril Gapp, Romain Allart, François Bouchy, Bruno L Canto Martins, Neil J Cook, René Doyon

Abstract:

The search for atmospheres on rocky exoplanets is a crucial step in understanding the processes driving atmosphere formation, retention, and loss. Past studies have revealed the existence of planets interior to the radius valley with densities lower than would be expected for pure-rock compositions, indicative of the presence of large volatile inventories, which could facilitate atmosphere retention. Here, we present an analysis of the JWST/NIRSpec G395H transmission spectrum of the warm ( Teq, AB=0=569 K) super-Earth TOI-270 b (Rp = 1.306 R⊕), captured alongside the transit of TOI-270 d. The JWST white light-curve transit depth updates TOI-270 b’s density to ρp = 3.7 ± 0.5 g cm−3, inconsistent at 4.4σ with an Earth-like composition. Instead, the planet is best explained by a nonzero, percent-level water mass fraction, possibly residing on the surface or stored within the interior. The JWST transmission spectrum shows possible spectroscopic evidence for the presence of this water as part of an atmosphere on TOI-270 b, favoring an H2O-rich steam atmosphere model over a flat spectrum ( lnB=0.3–3.2 , inconclusive to moderate), with the exact significance depending on whether an offset parameter between the NIRSpec detectors is included. We leverage the transit of the twice-larger TOI-270 d crossing the stellar disk almost simultaneously to rule out the alternative hypothesis that the transit light source effect could have caused the water feature in TOI-270 b’s observed transmission spectrum. Planetary evolution modeling furthermore shows that TOI-270 b could sustain a significant atmosphere on gigayear timescales, despite its high stellar irradiation, if it formed with a large initial volatile inventory.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet