JWST/NIRISS and HST: exploring the improved ability to characterise exoplanet atmospheres in the JWST era
Monthly Notices of the Royal Astronomical Society Oxford University Press 535:1 (2024) 27-46
Abstract:
The Hubble Space Telescope has been a pioneering instrument for studying the atmospheres of exoplanets, specifically its WFC3 and STIS instruments. With the launch of JWST, we are able to observe larger spectral ranges at higher precision. NIRISS/SOSS covers the range 0.6–2.8 microns, and thus, it can serve as a direct comparison to WFC3 (0.8–1.7 microns). We perform atmospheric retrievals of WFC3 and NIRISS transmission spectra of WASP-39 b in order to compare their constraining power. We find that NIRISS is able to retrieve precise H2O abundances that do not suffer a degeneracy with the continuum level due to the coverage of multiple spectral features. We also combine these data sets with spectra from STIS and find that challenges associated with fitting the steep optical slope can bias the retrieval results. In an effort to diagnose the differences between the WFC3 and NIRISS retrievals, we perform the analysis again on the NIRISS data cut to the same wavelength range as WFC3. We find that the water abundance is in strong disagreement with both the WFC3 and full NIRISS retrievals, highlighting the importance of wide wavelength coverage. Finally, we carry out mock retrievals on the different instruments, which shows further evidence of the challenges in constraining water abundance from the WFC3 data alone. Our study demonstrates the vast information gain of JWST’s NIRISS instrument over WFC3, highlighting the insights to be obtained from our new era of space-based instruments.HD152843 b & c: the masses and orbital periods of a sub-Neptune and a superpuff Neptune
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 532:4 (2024) 4632-4644
Identifying and fitting eclipse maps of exoplanets with cross-validation
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 532:4 (2024) 4350-4368
Simultaneous retrieval of orbital phase resolved JWST/MIRI emission spectra of the hot Jupiter WASP-43b: evidence of water, ammonia and carbon monoxide
Monthly Notices of the Royal Astronomical Society Oxford University Press 532:1 (2024) 460-475
Abstract:
Spectroscopic phase curves of hot Jupiters measure their emission spectra at multiple orbital phases, thus enabling detailed characterization of their atmospheres. Precise constraints on the atmospheric composition of these exoplanets offer insights into their formation and evolution. We analyse four phase-resolved emission spectra of the hot Jupiter WASP-43b, generated from a phase curve observed with the Mid-Infrared Instrument/Low Resolution Spectrometer onboard the JWST, to retrieve its atmospheric properties. Using a parametric 2D temperature model and assuming a chemically homogeneous atmosphere within the observed pressure region, we simultaneously fit the four spectra to constrain the abundances of atmospheric constituents, thereby yielding more precise constraints than previous work that analysed each spectrum independently. Our analysis reveals statistically significant evidence of NH$_3$ (4$\sigma$) in a hot Jupiter’s emission spectra for the first time, along with evidence of H$_2$O (6.5$\sigma$), CO (3.1$\sigma$), and a non-detection of CH$_4$. With our abundance constraints, we tentatively estimate the metallicity of WASP-43b at 0.6$-6.5\times$ solar and its C/O ratio at 0.6$-$0.9. Our findings offer vital insights into the atmospheric conditions and formation history of WASP-43b by simultaneously constraining the abundances of carbon, oxygen, and nitrogen-bearing species.The Impact of Scattering Clouds when Studying Exoplanet Emission Spectra with JWST
Copernicus Publications (2024)