Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H.
Nature 614:7949 (2023) 664-669
Abstract:
Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems1,2. Access to the chemical inventory of an exoplanet requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based3-5 and high-resolution ground-based6-8 facilities. Here we report the medium-resolution (R ≈ 600) transmission spectrum of an exoplanet atmosphere between 3 and 5 μm covering several absorption features for the Saturn-mass exoplanet WASP-39b (ref. 9), obtained with the Near Infrared Spectrograph (NIRSpec) G395H grating of JWST. Our observations achieve 1.46 times photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5σ) and H2O (21.5σ), and identify SO2 as the source of absorption at 4.1 μm (4.8σ). Best-fit atmospheric models range between 3 and 10 times solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterizing the chemistry in exoplanet atmospheres and showcase NIRSpec G395H as an excellent mode for time-series observations over this critical wavelength range10.Identification of carbon dioxide in an exoplanet atmosphere.
Nature 614:7949 (2023) 649-652
Abstract:
Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')1-3, and thus the formation processes of the primary atmospheres of hot gas giants4-6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7-9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10-12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0-5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models.APPLESOSS: A Producer of ProfiLEs for SOSS. Application to the NIRISS SOSS Mode
Publications of the Astronomical Society of the Pacific IOP Publishing 134:1040 (2022) 104502
ATOCA: an Algorithm to Treat Order Contamination. Application to the NIRISS SOSS Mode
Publications of the Astronomical Society of the Pacific IOP Publishing 134:1039 (2022) 094502
Impact of variable photospheric radius on exoplanet atmospheric retrievals
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 513:1 (2022) l20-l24