Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Jake Taylor (he/him)

Glasstone Fellow

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
jake.taylor@physics.ox.ac.uk
Denys Wilkinson Building, room 463
Personal website
  • About
  • Prizes, awards and recognition
  • Publications

BOWIE-ALIGN: A JWST comparative survey of aligned versus misaligned hot Jupiters to test the dependence of atmospheric composition on migration history

RAS Techniques and Instruments Oxford University Press 3:1 (2024) 691-704

Authors:

James Kirk, Eva-Maria Ahrer, Anna BT Penzlin, James E Owen, Richard A Booth, Lili Alderson, Duncan A Christie, Alastair B Claringbold, Emma Esparza-Borges, Chloe E Fisher, Mercedes López-Morales, NJ Mayne, Mason McCormack, Annabella Meech, Vatsal Panwar, Diana Powell, Denis E Sergeev, Jake Taylor, Shang-Min Tsai, Daniel Valentine, Hannah R Wakeford, Peter J Wheatley, Maria Zamyatina

Abstract:

A primary objective of exoplanet atmosphere characterization is to learn about planet formation and evolution, however, this is challenged by degeneracies. To determine whether differences in atmospheric composition can be reliably traced to differences in evolution, we are undertaking a transmission spectroscopy survey with JWST to compare the compositions of a sample of hot Jupiters that have different orbital alignments around F stars above the Kraft break. Under the assumption that aligned planets migrate through the inner disc, while misaligned planets migrate after disc dispersal, the act of migrating through the inner disc should cause a measurable difference in the C/O between aligned and misaligned planets. We expect the amplitude and sign of this difference to depend on the amount of planetesimal accretion and whether silicates accreted from the inner disc release their oxygen. Here, we identify all known exoplanets that are suitable for testing this hypothesis, describe our JWST survey, and use noise simulations and atmospheric retrievals to estimate our survey’s sensitivity. With the selected sample of four aligned and four misaligned hot Jupiters, we will be sensitive to the predicted differences in C/O between aligned and misaligned hot Jupiters for a wide range of model scenarios.
More details from the publisher
Details from ORA

JWST/NIRISS and HST: exploring the improved ability to characterise exoplanet atmospheres in the JWST era

Monthly Notices of the Royal Astronomical Society Oxford University Press 535:1 (2024) 27-46

Authors:

Chloe Fisher, Jake Taylor, Vivien Parmentier, Daniel Kitzmann, Jayne Birkby, Michael Radica, Joanna Barstow, Jingxuan Yang, Giuseppe Morello

Abstract:

The Hubble Space Telescope has been a pioneering instrument for studying the atmospheres of exoplanets, specifically its WFC3 and STIS instruments. With the launch of JWST, we are able to observe larger spectral ranges at higher precision. NIRISS/SOSS covers the range 0.6–2.8 microns, and thus, it can serve as a direct comparison to WFC3 (0.8–1.7 microns). We perform atmospheric retrievals of WFC3 and NIRISS transmission spectra of WASP-39 b in order to compare their constraining power. We find that NIRISS is able to retrieve precise H2O abundances that do not suffer a degeneracy with the continuum level due to the coverage of multiple spectral features. We also combine these data sets with spectra from STIS and find that challenges associated with fitting the steep optical slope can bias the retrieval results. In an effort to diagnose the differences between the WFC3 and NIRISS retrievals, we perform the analysis again on the NIRISS data cut to the same wavelength range as WFC3. We find that the water abundance is in strong disagreement with both the WFC3 and full NIRISS retrievals, highlighting the importance of wide wavelength coverage. Finally, we carry out mock retrievals on the different instruments, which shows further evidence of the challenges in constraining water abundance from the WFC3 data alone. Our study demonstrates the vast information gain of JWST’s NIRISS instrument over WFC3, highlighting the insights to be obtained from our new era of space-based instruments.
More details from the publisher
Details from ORA
More details

HD152843 b & c: the masses and orbital periods of a sub-Neptune and a superpuff Neptune

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 532:4 (2024) 4632-4644

Authors:

BA Nicholson, S Aigrain, NL Eisner, M Cretignier, O Barragán, L Kaye, J Taylor, J Owen, A Mortier, L Affer, W Boschin, LA Buchhave, A Collier Cameron, M Damasso, L Di Fabrizio, V DiTomasso, X Dumusque, A Ghedina, DW Latham, M López-Morales, V Lorenzi, AF Martínez Fiorenzano, E Molinari, M Pedani, M Pinamonti, K Rice, A Sozzetti
More details from the publisher
More details

Identifying and fitting eclipse maps of exoplanets with cross-validation

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 532:4 (2024) 4350-4368

Authors:

Mark Hammond, Neil T Lewis, Sasha Boone, Xueqing Chen, João M Mendonça, Vivien Parmentier, Jake Taylor, Taylor Bell, Leonardo dos Santos, Nicolas Crouzet, Laura Kreidberg, Michael Radica, Michael Zhang
More details from the publisher
More details

Simultaneous retrieval of orbital phase resolved JWST/MIRI emission spectra of the hot Jupiter WASP-43b: evidence of water, ammonia and carbon monoxide

Monthly Notices of the Royal Astronomical Society Oxford University Press 532:1 (2024) 460-475

Authors:

Jingxuan Yang, Mark Hammond, Anjali AA Piette, Jasmina Blecic, Taylor J Bell, Patrick GJ Irwin, Vivien Parmentier, Shang-Min Tsai, Joanna K Barstow, Nicolas Crouzet, Laura Kreidberg, João M Mendonça, Jake Taylor, Robin Baeyens, Kazumasa Ohno, Lucas Teinturier, Matthew C Nixon

Abstract:

Spectroscopic phase curves of hot Jupiters measure their emission spectra at multiple orbital phases, thus enabling detailed characterization of their atmospheres. Precise constraints on the atmospheric composition of these exoplanets offer insights into their formation and evolution. We analyse four phase-resolved emission spectra of the hot Jupiter WASP-43b, generated from a phase curve observed with the Mid-Infrared Instrument/Low Resolution Spectrometer onboard the JWST, to retrieve its atmospheric properties. Using a parametric 2D temperature model and assuming a chemically homogeneous atmosphere within the observed pressure region, we simultaneously fit the four spectra to constrain the abundances of atmospheric constituents, thereby yielding more precise constraints than previous work that analysed each spectrum independently. Our analysis reveals statistically significant evidence of NH$_3$ (4$\sigma$) in a hot Jupiter’s emission spectra for the first time, along with evidence of H$_2$O (6.5$\sigma$), CO (3.1$\sigma$), and a non-detection of CH$_4$. With our abundance constraints, we tentatively estimate the metallicity of WASP-43b at 0.6$-6.5\times$ solar and its C/O ratio at 0.6$-$0.9. Our findings offer vital insights into the atmospheric conditions and formation history of WASP-43b by simultaneously constraining the abundances of carbon, oxygen, and nitrogen-bearing species.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet