Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Jake Taylor (he/him)

Glasstone Fellow

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
jake.taylor@physics.ox.ac.uk
Denys Wilkinson Building, room 463
Personal website
  • About
  • Prizes, awards and recognition
  • Publications

2.5-D retrieval of atmospheric properties from exoplanet phase curves: Application to WASP-43b observations

Authors:

PATRICK Irwin, V Parmentier, J Taylor, J Barstow, S Aigrain, GRAHAM Lee, R Garland

Abstract:

We present a novel retrieval technique that attempts to model phase curve observations of exoplanets more realistically and reliably, which we call the 2.5-dimension (2.5-D) approach. In our 2.5-D approach we retrieve the vertical temperature profile and mean gaseous abundance of a planet at all longitudes and latitudes \textbf{simultaneously}, assuming that the temperature or composition, $x$, at a particular longitude and latitude $(\Lambda,\Phi)$ is given by $x(\Lambda,\Phi) = \bar{x} + (x(\Lambda,0) - \bar{x})\cos^n\Phi$, where $\bar{x}$ is the mean of the morning and evening terminator values of $x(\Lambda,0)$, and $n$ is an assumed coefficient. We compare our new 2.5-D scheme with the more traditional 1-D approach, which assumes the same temperature profile and gaseous abundances at all points on the visible disc of a planet for each individual phase observation, using a set of synthetic phase curves generated from a GCM-based simulation. We find that our 2.5-D model fits these data more realistically than the 1-D approach, confining the hotter regions of the planet more closely to the dayside. We then apply both models to the WASP-43b phase curve observations of HST/WFC3 and Spitzer/IRAC (Stevenson et al., 2017). We find that the dayside of WASP-43b is apparently much hotter than the nightside and show that this could be explained by the presence of a thick cloud on the nightside with a cloud top at pressure $< 0.2$ bar. We further show that while the mole fraction of water vapour is reasonably well constrained to $(1-10)\times10^{-4}$, the abundance of CO is very difficult to constrain with these data since it is degenerate with temperature.
More details
More details from the publisher
Details from ArXiV

Planet Hunters TESS III: two transiting planets around the bright G dwarf HD 152843

Authors:

Nora L Eisner, Belinda A Nicholson, Oscar Barragán, Suzanne Aigrain, Chris Lintott, Laurel Kaye, Baptiste Klein, Grant Miller, Jake Taylor, Norbert Zicher, Lars A Buchhave, Douglas A Caldwell, Jonti Horner, Joe Llama, Annelies Mortier, Vinesh M Rajpaul, Keivan Stassun, Avi Sporer, Andrew Tkachenko, Jon M Jenkins, David W Latham, George R Ricker, Sara Seager, Joshua N Winn, Safaa Alhassan, Elisabeth ML Baeten, Stewart J Bean, David M Bundy, Vitaly Efremov, Richard Ferstenou, Brian L Goodwin, Michelle Hof, Tony Hoffman, Alexander Hubert, Lily Lau, Sam Lee, David Maetschke, Klaus Peltsch, Cesar Rubio-Alfaro, Gary M Wilson

Abstract:

We report on the discovery and validation of a two-planet system around a bright (V = 8.85 mag) early G dwarf (1.43 $R_{\odot}$, 1.15 $M_{\odot}$, TOI 2319) using data from NASA's Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of \Pb\ and radius of $3.41 _{ - 0.12 } ^ { + 0.14 }$ $R_{\oplus}$ for the inner planet, and a period in the range 19.26-35 days and a radius of $5.83 _{ - 0.14 } ^ { + 0.14 }$ $R_{\oplus}$ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $11.56 _{ - 6.14 } ^ { + 6.58 }$ $M_{\oplus}$, and allow us to place an upper limit of $27.5$ $M_{\oplus}$ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterisation and comparative planetology.
More details from the publisher
More details
More details
Details from ArXiV

The Transiting Exoplanet Community Early Release Science Program for JWST

Authors:

JL Bean, KB Stevenson, NM Batalha, Z Berta-Thompson, L Kreidberg, N Crouzet, B Benneke, Line, DK Sing, HR Wakeford, HA Knutson, EM-R Kempton, J-M Désert, I Crossfield, NE Batalha, JD Wit, V Parmentier, J Harrington, JI Moses, M Lopez-Morales, MK Alam, J Blecic, G Bruno, AL Carter, JW Chapman, L Decin, D Dragomir, TM Evans, JJ Fortney, JD Fraine, P Gao, AG Muñoz, NP Gibson, JM Goyal, K Heng, R Hu, S Kendrew, BM Kilpatrick, J Krick, P-O Lagage, M Lendl, T Louden, N Madhusudhan, AM Mandell, M Mansfield, EM May, G Morello, CV Morley, N Nikolov, S Redfield

Abstract:

The James Webb Space Telescope (JWST) presents the opportunity to transform our understanding of planets and the origins of life by revealing the atmospheric compositions, structures, and dynamics of transiting exoplanets in unprecedented detail. However, the high-precision, time-series observations required for such investigations have unique technical challenges, and prior experience with other facilities indicates that there will be a steep learning curve when JWST becomes operational. In this paper we describe the science objectives and detailed plans of the Transiting Exoplanet Community Early Release Science (ERS) Program, which is a recently approved program for JWST observations early in Cycle 1. The goal of this project, for which the obtained data will have no exclusive access period, is to accelerate the acquisition and diffusion of technical expertise for transiting exoplanet observations with JWST, while also providing a compelling set of representative datasets that will enable immediate scientific breakthroughs. The Transiting Exoplanet Community ERS Program will exercise the time-series modes of all four JWST instruments that have been identified as the consensus highest priorities, observe the full suite of transiting planet characterization geometries (transits, eclipses, and phase curves), and target planets with host stars that span an illustrative range of brightnesses. The observations in this program were defined through an inclusive and transparent process that had participation from JWST instrument experts and international leaders in transiting exoplanet studies. Community engagement in the project will be centered on a two-phase Data Challenge that culminates with the delivery of planetary spectra, time-series instrument performance reports, and open-source data analysis toolkits in time to inform the agenda for Cycle 2 of the JWST mission.
More details
More details from the publisher
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet