Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Quantum interference between photo-excited states in a solid-state mott insulator

Optics InfoBase Conference Papers (2010)

Authors:

S Wall, D Brida, SR Clark, HP Ehrke, D Jaksch, A Ardavan, S Bonora, H Uemura, Y Takahashi, T Hasegawa, H Okamoto, G Cerullo, A Cavalleri

Abstract:

By exciting with sub-10-fs 1.6-μm pulses the quasi-one-dimensional Mott insulator ETF2TCNQ, we observe prompt collapse of the Mott gap modulated by 24-THz oscillations of the gap, which are assigned to quantum interference between holon-doublon excitations. © 2010 Optical Society of America.

Long-distance entanglement generation in two-dimensional networks

Physical Review A - Atomic, Molecular, and Optical Physics 82:4 (2010)

Authors:

S Broadfoot, U Dorner, D Jaksch

Abstract:

We consider two-dimensional networks composed of nodes initially linked by two-qubit mixed states. In these networks we develop a global error correction scheme that can generate distance-independent entanglement from arbitrary network geometries using rank-2 states. By using this method and combining it with the concept of percolation, we also show that the generation of long-distance entanglement is possible with rank-3 states. Entanglement percolation and global error correction have different advantages depending on the given situation. To reveal the trade-off between them we consider their application to networks containing pure states. In doing so we find a range of pure-state schemes, each of which has applications in particular circumstances: For instance, we can identify a protocol for creating perfect entanglement between two distant nodes. However, this protocol cannot generate a singlet between any two nodes. In contrast, we can also construct schemes for creating entanglement between any nodes, but the corresponding entanglement fidelity is lower. © 2010 The American Physical Society.
More details from the publisher
More details

Phonon resonances in atomic currents through Bose-Fermi mixtures in optical lattices

Physical Review A 82:4 (2010) 043617

Authors:

M Bruderer, TH Johnson, SR Clark, D Jaksch, A Posazhennikova, W Belzig

Abstract:

We present an analysis of Bose-Fermi mixtures in optical lattices for the case where the lattice potential of the fermions is tilted and the bosons (in the superfluid phase) are described by Bogoliubov phonons. It is shown that the Bogoliubov phonons enable hopping transitions between fermionic Wannier-Stark states; these transitions are accompanied by energy dissipation into the superfluid and result in a net atomic current along the lattice. We derive a general expression for the drift velocity of the fermions and find that the dependence of the atomic current on the lattice tilt exhibits negative differential conductance and phonon resonances. Numerical simulations of the full dynamics of the system based on the time-evolving block decimation algorithm reveal that the phonon resonances should be observable under the conditions of a realistic measuring procedure.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Quantum interference between photo-excited states in a solid-state Mott insulator

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 (2010)

Authors:

S Wall, D Brida, SR Clark, HP Ehrke, D Jaksch, A Ardavan, S Bonora, H Uemura, Y Takahashi, T Hasegawa, H Okamoto, G Cerullo, A Cavalleri

Abstract:

By exciting with sub-10-fs 1.6-μm pulses the quasi-one-dimensional Mott insulator ETF2TCNQ, we observe prompt collapse of the Mott gap modulated by 24-THz oscillations of the gap, which are assigned to quantum interference between holon-doublon excitations. © 2010 Optical Society of America.
More details from the publisher
More details

Comparing phonon dephasing lifetimes in diamond using Transient Coherent Ultrafast Phonon Spectroscopy

Diamond and Related Materials 19:10 (2010) 1289-1295

Authors:

KC Lee, BJ Sussman, J Nunn, VO Lorenz, K Reim, D Jaksch, IA Walmsley, P Spizzirri, S Prawer

Abstract:

Transient Coherent Ultrafast Phonon Spectroscopy (TCUPS) is utilized to study phonon dephasing lifetimes in various diamond types. Samples of natural, chemical vapour deposited, and high pressure high temperature diamond are compared showing significant differences. Dephasing mechanisms are discussed. © 2010 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet