Multimode memories with longitudinally broadened ensembles
Conference on Quantum Electronics and Laser Science (QELS) - Technical Digest Series (2008)
Abstract:
Quantum storage of multiple optical modes affords improved performance for quantum repeaters. We present new analytic and numerical results unifying the scaling of the multimode storage capacity for various memory protocols in artificially broadened ensembles. © 2008 Optical Society of America.Efficient spatially resolved multimode quantum memory
Physical Review A - Atomic, Molecular, and Optical Physics 78:3 (2008)
Abstract:
Light storage in atomic ensembles has been implemented successfully, but the retrieval efficiency can be low. We propose to improve this efficiency with appropriately phase-matched backward propagating retrieval. This method allows for easy spatial filtering of the retrieved light; in addition, multiple optical modes can be stored in the transverse momentum of the ensemble. We model walk-off effects with a full numerical simulation, and confirm the applicability of the scheme. © 2008 The American Physical Society.Optical lattice quantum Hall effect
Physical Review A - Atomic, Molecular, and Optical Physics 78:1 (2008)
Abstract:
We explore the behavior of interacting bosonic atoms in an optical lattice subject to a large artificial magnetic field. We extend earlier investigations of this system where the number of magnetic flux quanta per unit cell α is close to a simple rational number. Interesting topological states such as the Laughlin and Read-Rezayi states can occur even if the atoms experience a weak trapping potential in one direction. An explicit numerical calculation near α=1/2 shows that the system exhibits a striped vortex lattice phase of one species, which is analogous to the behavior of a two-species system for small α. We also investigate methods to probe the encountered states. These include spatial correlation functions and the measurement of noise correlations in time-of-flight expanded atomic clouds. Characteristic differences arise which allow for an identification of the respective quantum Hall states. We furthermore discuss that a counterintuitive flow of the Hall current occurs for certain values of α. © 2008 The American Physical Society.Self-trapping of Bose-Einstein condensates expanding into shallow optical lattices
Physical Review A - Atomic, Molecular, and Optical Physics 77:6 (2008)
Abstract:
We observe a sudden breakdown of the transport of a strongly repulsive Bose-Einstein condensate through a shallow optical lattice of finite width. We are able to attribute this behavior to the development of a self-trapped state by using accurate numerical methods and an analytical description in terms of nonlinear Bloch waves. The dependence of the breakdown on the lattice depth and the interaction strength is investigated. We show that it is possible to prohibit the self-trapping by applying a constant offset potential to the lattice region. Furthermore, we observe the disappearance of the self-trapped state after a finite time as a result of the revived expansion of the condensate through the lattice. This revived expansion is due to the finite width of the lattice. © 2008 The American Physical Society.Self-trapping of impurities in Bose-Einstein condensates: Strong attractive and repulsive coupling
EPL 82:3 (2008)