Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Quantum self-supervised learning

Quantum Science and Technology IOP Publishing 7:3 (2022) 35005

Authors:

B Jaderberg, Lw Anderson, W Xie, S Albanie, M Kiffner, D Jaksch

Abstract:

The resurgence of self-supervised learning, whereby a deep learning model generates its own supervisory signal from the data, promises a scalable way to tackle the dramatically increasing size of real-world data sets without human annotation. However, the staggering computational complexity of these methods is such that for state-of-the-art performance, classical hardware requirements represent a significant bottleneck to further progress. Here we take the first steps to understanding whether quantum neural networks (QNNs) could meet the demand for more powerful architectures and test its effectiveness in proof-of-principle hybrid experiments. Interestingly, we observe a numerical advantage for the learning of visual representations using small-scale QNN over equivalently structured classical networks, even when the quantum circuits are sampled with only 100 shots. Furthermore, we apply our best quantum model to classify unseen images on the ibmq_paris quantum computer and find that current noisy devices can already achieve equal accuracy to the equivalent classical model on downstream tasks.
More details from the publisher
Details from ORA
More details

Dipolar Bose-Hubbard model in finite-size real-space cylindrical lattices

Physical Review A American Physical Society 105:5 (2022) 053301

Authors:

Michael Hughes, Dieter Jaksch

Abstract:

Recent experimental progress in magnetic atoms and polar molecules has created the prospect of simulating dipolar Hubbard models with off-site interactions. When applied to real-space cylindrical optical lattices, these anisotropic dipole-dipole interactions acquire a tunable spatially dependent component while they remain translationally invariant in the axial direction, creating a sublattice structure in the azimuthal direction. We numerically study how the coexistence of these classes of interactions affects the ground state of hard-core dipolar bosons at half filling in a finite-size cylindrical optical lattice with octagonal rings. When these two interaction classes cooperate, we find a solid state where the density order is determined by the azimuthal sublattice structure and builds smoothly as the interaction strength increases. For dipole polarizations where the axial interactions are sufficiently repulsive, the repulsion competes with the sublattice structure, significantly increasing entanglement and creating two distinct ordered density patterns. The spatially varying interactions cause the emergence of these ordered states in small lattices as a function of interaction strength to be staggered according to the azimuthal sublattices.
More details from the publisher
Details from ORA
More details

Algebraic theory of quantum synchronization and limit cycles under dissipation

SciPost Physics SciPost 12 (2022) 097

Authors:

Berislav Buča, Cameron Booker, Dieter Jaksch

Abstract:

Synchronization is a phenomenon where interacting particles lock their motion and display non-trivial dynamics. Despite intense efforts studying synchronization in systems without clear classical limits, no comprehensive theory has been found. We develop such a general theory based on novel necessary and sufficient algebraic criteria for persistently oscillating eigenmodes (limit cycles) of time-independent quantum master equations. We show these eigenmodes must be quantum coherent and give an exact analytical solution for all such dynamics in terms of a dynamical symmetry algebra. Using our theory, we study both stable synchronization and metastable/transient synchronization. We use our theory to fully characterise spontaneous synchronization of autonomous systems. Moreover, we give compact algebraic criteria that may be used to prove absence of synchronization. We demonstrate synchronization in several systems relevant for various fermionic cold atom experiments.
More details from the publisher
Details from ORA
Details from ArXiV
More details

A quantum-inspired approach to exploit turbulence structures

Nature Computational Science Springer Nature 2:2022 (2022) 30-37

Authors:

Nikita Gourianov, Michael Lubasch, Sergey Dolgov, van den Berg Quincy Yves, Hessam Babaee, Peyman Givi, Martin Kiffner, Dieter Jaksch

Abstract:

Understanding turbulence is key to our comprehension of many natural and technological flow processes. At the heart of this phenomenon lies its intricate multiscale nature, describing the coupling between different-sized eddies in space and time. Here we analyze the structure of turbulent flows by quantifying correlations between different length scales using methods inspired from quantum many-body physics. We present the results for interscale correlations of two paradigmatic flow examples, and use these insights along with tensor network theory to design a structure-resolving algorithm for simulating turbulent flows. With this algorithm, we find that the incompressible Navier–Stokes equations can be accurately solved even when reducing the number of parameters required to represent the velocity field by more than one order of magnitude compared to direct numerical simulation. Our quantum-inspired approach provides a pathway towards conducting computational fluid dynamics on quantum computers.
More details from the publisher
Details from ORA
More details
More details

Algebraic theory of quantum synchronization and limit cycles under dissipation

SCIPOST PHYSICS 12:3 (2022) ARTN 097

Authors:

Berislav Buca, Cameron Booker, Dieter Jaksch
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet