Lieb's Theorem and Maximum Entropy Condensates
Quantum 5 (2021)
Abstract:
Coherent driving has established itself as a powerful tool for guiding a many-body quantum system into a desirable, coherent non-equilibrium state. A thermodynamically large system will, however, almost always saturate to a featureless infinite temperature state under continuous driving and so the optical manipulation of many-body systems is considered feasible only if a transient, prethermal regime exists, where heating is suppressed. Here we show that, counterintuitively, in a broad class of lattices Floquet heating can actually be an advantageous effect. Specifically, we prove that the maximum entropy steady states which form upon driving the ground state of the Hubbard model on unbalanced bi-partite lattices possess uniform off-diagonal long-range order which remains finite even in the thermodynamic limit. This creation of a 'hot' condensate can occur on any driven unbalanced lattice and provides an understanding of how heating can, at the macroscopic level, expose and alter the order in a quantum system. We discuss implications for recent experiments observing emergent superconductivity in photoexcited materials.Tuning Metastable Light-Induced Superconductivity in K3C60 with a Hybrid CO2-Ti:Sapphire Laser
Optica Publishing Group (2021) ff1a.5
Bethe ansatz approach for dissipation: exact solutions of quantum many-body dynamics under loss
New Journal of Physics IOP Publishing 22 (2020) 123040
Abstract:
We develop a Bethe ansatz based approach to study dissipative systems experiencing loss. The method allows us to exactly calculate the spectra of interacting, many-body Liouvillians. We discuss how the dissipative Bethe ansatz opens the possibility of analytically calculating the dynamics of a wide range of experimentally relevant models including cold atoms subjected to one and two body losses, coupled cavity arrays with bosons escaping the cavity, and cavity quantum electrodynamics. As an example of our approach we study the relaxation properties in a boundary driven XXZ spin chain. We exactly calculate the Liouvillian gap and find different relaxation rates with a novel type of dynamical dissipative phase transition. This physically translates into the formation of a stable domain wall in the easy-axis regime despite the presence of loss. Such analytic results have previously been inaccessible for systems of this type.Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition
Physical Review X American Physical Society 10 (2020) 041027
Abstract:
The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices.Anomalous spin-charge separation in a driven Hubbard system
Physical Review Letters American Physical Society 125:19 (2020) 195301