Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Analytical solution for the steady states of the driven Hubbard model

Physical Review B American Physical Society 103:3 (2021) 35146

Authors:

J Tindall, F Schlawin, Ma Sentef, D Jaksch

Abstract:

Under the action of coherent periodic driving a generic quantum system will undergo Floquet heating and continuously absorb energy until it reaches a featureless thermal state. The phase-space constraints induced by certain symmetries can, however, prevent this and allow the system to dynamically form robust steady states with off-diagonal long-range order. In this work, we take the Hubbard model on an arbitrary lattice with arbitrary filling and, by simultaneously diagonalizing the two possible SU(2) symmetries of the system, we analytically construct the correlated steady states for different symmetry classes of driving. This construction allows us to make verifiable, quantitative predictions about the long-range particle-hole and spin-exchange correlations that these states can possess. In the case when both SU(2) symmetries are preserved in the thermodynamic limit we show how the driving can be used to form a unique condensate which simultaneously hosts particle-hole and spin-wave order.
More details from the publisher
Details from ORA
More details

Lieb's Theorem and Maximum Entropy Condensates

Quantum 5 (2021)

Authors:

J Tindall, F Schlawin, MA Sentef, D Jaksch

Abstract:

Coherent driving has established itself as a powerful tool for guiding a many-body quantum system into a desirable, coherent non-equilibrium state. A thermodynamically large system will, however, almost always saturate to a featureless infinite temperature state under continuous driving and so the optical manipulation of many-body systems is considered feasible only if a transient, prethermal regime exists, where heating is suppressed. Here we show that, counterintuitively, in a broad class of lattices Floquet heating can actually be an advantageous effect. Specifically, we prove that the maximum entropy steady states which form upon driving the ground state of the Hubbard model on unbalanced bi-partite lattices possess uniform off-diagonal long-range order which remains finite even in the thermodynamic limit. This creation of a 'hot' condensate can occur on any driven unbalanced lattice and provides an understanding of how heating can, at the macroscopic level, expose and alter the order in a quantum system. We discuss implications for recent experiments observing emergent superconductivity in photoexcited materials.
More details from the publisher

Tuning Metastable Light-Induced Superconductivity in K3C60 with a Hybrid CO2-Ti:Sapphire Laser

Optica Publishing Group (2021) ff1a.5

Authors:

Matthias Budden, Thomas Gebert, Michele Buzzi, Gregor Jotzu, Eryin Wang, Toru Matsuyama, Guido Meier, Yannis Laplace, Daniele Pontiroli, Mauro Riccò, Frank Schlawin, Dieter Jaksch, Andrea Cavalleri
More details from the publisher
More details

Bethe ansatz approach for dissipation: exact solutions of quantum many-body dynamics under loss

New Journal of Physics IOP Publishing 22 (2020) 123040

Authors:

Berislav Buca, Cameron Booker, Marko Medenjak, Dieter Jaksch

Abstract:

We develop a Bethe ansatz based approach to study dissipative systems experiencing loss. The method allows us to exactly calculate the spectra of interacting, many-body Liouvillians. We discuss how the dissipative Bethe ansatz opens the possibility of analytically calculating the dynamics of a wide range of experimentally relevant models including cold atoms subjected to one and two body losses, coupled cavity arrays with bosons escaping the cavity, and cavity quantum electrodynamics. As an example of our approach we study the relaxation properties in a boundary driven XXZ spin chain. We exactly calculate the Liouvillian gap and find different relaxation rates with a novel type of dynamical dissipative phase transition. This physically translates into the formation of a stable domain wall in the easy-axis regime despite the presence of loss. Such analytic results have previously been inaccessible for systems of this type.
More details from the publisher
Details from ORA
More details

Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition

Physical Review X American Physical Society 10 (2020) 041027

Authors:

Yuto Ashida, A Imamoglu, J Faist

Abstract:

The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet