Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Dieter Jaksch

Professor of Physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Quantum systems engineering
Dieter.Jaksch@physics.ox.ac.uk
  • About
  • Publications

Minimum hardware requirements for hybrid quantum-classical DMFT

Quantum Science and Technology IOP Science 5:3 (2020) 34015

Authors:

B Jaderberg, A Agarwal, K Leonhardt, M Kiffner, D Jaksch

Abstract:

We numerically emulate noisy intermediate-scale quantum (NISQ) devices and determine the minimal hardware requirements for two-site hybrid quantum-classical dynamical mean-field theory (DMFT). We develop a circuit recompilation algorithm which significantly reduces the number of quantum gates of the DMFT algorithm and find that the quantum-classical algorithm converges if the two-qubit gate fidelities are larger than 99%. The converged results agree with the exact solution within 10%, and perfect agreement within noise-induced error margins can be obtained for two-qubit gate fidelities exceeding 99.9%. By comparison, the quantum-classical algorithm without circuit recompilation requires a two-qubit gate fidelity of at least 99.999% to achieve perfect agreement with the exact solution. We thus find quantum-classical DMFT calculations can be run on the next generation of NISQ devices if combined with the recompilation techniques developed in this work.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Parallel time-dependent variational principle algorithm for matrix product states

Physical Review B American Physical Society 101:23 (2020) 235123

Authors:

Paul Secular, Nikita Gourianov, Michael Lubasch, Sergey Dolgov, Stephen R Clark, Dieter Jaksch

Abstract:

Combining the time-dependent variational principle (TDVP) algorithm with the parallelization scheme introduced by Stoudenmire and White for the density matrix renormalization group (DMRG), we present the first parallel matrix product state (MPS) algorithm capable of time evolving one-dimensional (1D) quantum lattice systems with long-range interactions. We benchmark the accuracy and performance of the algorithm by simulating quenches in the long-range Ising and XY models. We show that our code scales well up to 32 processes, with parallel efficiencies as high as 86%. Finally, we calculate the dynamical correlation function of a 201-site Heisenberg XXX spin chain with 1/r2 interactions, which is challenging to compute sequentially. These results pave the way for the application of tensor networks to increasingly complex many-body systems.
More details from the publisher
Details from ORA
More details

A robust entangling gate for polar molecules using magnetic and microwave fields

Physical Review A American Physical Society 101:6 (2020) 062308

Authors:

Michael Hughes, Matthew D Frye, Rahul Sawant, Gaurav Bhole, Jonathan A Jones, Simon L Cornish, Mr Tarbutt, Jeremy M Hutson, Dieter Jaksch, Jordi Mur Petit

Abstract:

Polar molecules are an emerging platform for quantum technologies based on their long-range electric dipole–dipole interactions, which open new possibilities for quantum information processing and the quantum simulation of strongly correlated systems. Here, we use magnetic and microwave fields to design a fast entangling gate with > 0.999 fidelity and which is robust with respect to fluctuations in the trapping and control fields and to small thermal excitations. These results establish the feasibility to build a scalable quantum processor with a broad range of molecular species in optical-lattice and optical-tweezers setups.
More details from the publisher
Details from ORA

Robust entangling gate for polar molecules using magnetic and microwave fields

PHYSICAL REVIEW A 101:6 (2020) 62308

Authors:

Michael Hughes, Matthew D Frye, Rahul Sawant, Gaurav Bhole, Jonathan A Jones, Simon L Cornish, Mr Tarbutt, Jeremy M Hutson, Dieter Jaksch, Jordi Mur-Petit

Abstract:

© 2020 American Physical Society. Polar molecules are an emerging platform for quantum technologies based on their long-range electric dipole-dipole interactions, which open new possibilities for quantum information processing and the quantum simulation of strongly correlated systems. Here, we use magnetic and microwave fields to design a fast entangling gate with >0.999 fidelity and which is robust with respect to fluctuations in the trapping and control fields and to small thermal excitations. These results establish the feasibility to build a scalable quantum processor with a broad range of molecular species in optical-lattice and optical-tweezers setups.
More details from the publisher
More details
Details from ArXiV
More details

Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice.

Physical review letters 124:25 (2020) 253201

Authors:

M Mizoguchi, Y Zhang, M Kunimi, A Tanaka, S Takeda, N Takei, V Bharti, K Koyasu, T Kishimoto, D Jaksch, A Glaetzle, M Kiffner, G Masella, G Pupillo, M Weidemüller, K Ohmori

Abstract:

We study an array of ultracold atoms in an optical lattice (Mott insulator) excited with a coherent ultrashort laser pulse to a state where single-electron wave functions spatially overlap. Beyond a threshold principal quantum number where Rydberg orbitals of neighboring lattice sites overlap with each other, the atoms efficiently undergo spontaneous Penning ionization resulting in a drastic change of ion-counting statistics, sharp increase of avalanche ionization, and the formation of an ultracold plasma. These observations signal the actual creation of electronic states with overlapping wave functions, which is further confirmed by a significant difference in ionization dynamics between a Bose-Einstein condensate and a Mott insulator. This system is a promising platform for simulating electronic many-body phenomena dominated by Coulomb interactions in the condensed phase.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet