Isolated Heisenberg magnet as a quantum time crystal
Physical Review B American Physical Society 102:4 (2020) 041117(R)
Abstract:
We demonstrate analytically and numerically that the paradigmatic model of quantum magnetism, the Heisenberg XXZ spin chain, does not equilibrate. It constitutes an example of persistent nonstationarity in a quantum many-body system that does not rely on external driving or coupling to an environment. We trace this phenomenon to the existence of extensive dynamical symmetries. We discuss how the ensuing persistent oscillations that seemingly violate one of the most fundamental laws of physics could be observed experimentally.Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice
Physical Review Letters American Physical Society (APS) 124:25 (2020) 253201
Minimum hardware requirements for hybrid quantum-classical DMFT
Quantum Science and Technology IOP Science 5:3 (2020) 34015
Abstract:
We numerically emulate noisy intermediate-scale quantum (NISQ) devices and determine the minimal hardware requirements for two-site hybrid quantum-classical dynamical mean-field theory (DMFT). We develop a circuit recompilation algorithm which significantly reduces the number of quantum gates of the DMFT algorithm and find that the quantum-classical algorithm converges if the two-qubit gate fidelities are larger than 99%. The converged results agree with the exact solution within 10%, and perfect agreement within noise-induced error margins can be obtained for two-qubit gate fidelities exceeding 99.9%. By comparison, the quantum-classical algorithm without circuit recompilation requires a two-qubit gate fidelity of at least 99.999% to achieve perfect agreement with the exact solution. We thus find quantum-classical DMFT calculations can be run on the next generation of NISQ devices if combined with the recompilation techniques developed in this work.Parallel time-dependent variational principle algorithm for matrix product states
Physical Review B American Physical Society 101:23 (2020) 235123
Abstract:
Combining the time-dependent variational principle (TDVP) algorithm with the parallelization scheme introduced by Stoudenmire and White for the density matrix renormalization group (DMRG), we present the first parallel matrix product state (MPS) algorithm capable of time evolving one-dimensional (1D) quantum lattice systems with long-range interactions. We benchmark the accuracy and performance of the algorithm by simulating quenches in the long-range Ising and XY models. We show that our code scales well up to 32 processes, with parallel efficiencies as high as 86%. Finally, we calculate the dynamical correlation function of a 201-site Heisenberg XXX spin chain with 1/r2 interactions, which is challenging to compute sequentially. These results pave the way for the application of tensor networks to increasingly complex many-body systems.A robust entangling gate for polar molecules using magnetic and microwave fields
Physical Review A American Physical Society 101:6 (2020) 062308