Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

GAMA/DEVILS: constraining the cosmic star formation history from improved measurements of the 0.3-2.2 mu m extragalactic background light

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 503:2 (2021) 2033-2052

Authors:

Soheil Koushan, Simon P Driver, Sabine Bellstedt, Luke J Davies, Aaron SG Robotham, Claudia del P Lagos, Abdolhosein Hashemizadeh, Danail Obreschkow, Jessica E Thorne, Malcolm Bremer, Bw Holwerda, Matt J Jarvis, Andrew M Hopkins, Malgorzata Siudek, Rogier A Windhorst

Abstract:

We present a revised measurement of the optical extragalactic background light (EBL), based on the contribution of resolved galaxies to the integrated galaxy light (IGL). The cosmic optical background radiation (COB), encodes the light generated by star formation, and provides a wealth of information about the cosmic star formation history (CSFH). We combine wide and deep galaxy number counts from the Galaxy And Mass Assembly survey (GAMA) and Deep Extragalactic VIsible Legacy Survey (DEVILS), along with the Hubble Space Telescope (HST) archive and other deep survey data sets, in nine multiwavelength filters to measure the COB in the range from 0.35  μm to 2.2  μm. We derive the luminosity density in each band independently and show good agreement with recent and complementary estimates of the optical-EBL from very high-energy (VHE) experiments. Our error analysis suggests that the IGL and γ-ray measurements are now fully consistent to within ∼10 per cent⁠, suggesting little need for any additional source of diffuse light beyond the known galaxy population. We use our revised IGL measurements to constrain the CSFH, and place amplitude constraints on a number of recent estimates. As a consistency check, we can now demonstrate convincingly, that the CSFH, stellar mass growth, and the optical-EBL provide a fully consistent picture of galaxy evolution. We conclude that the peak of star formation rate lies in the range 0.066–0.076 M⊙ yr−1 Mpc−3 at a lookback time of 9.1 to 10.9 Gyr.
More details from the publisher
Details from ORA
More details

MIGHTEE-HI: The H I emission project of the MeerKAT MIGHTEE survey

Astronomy and Astrophysics EDP Sciences 646:February 2021 (2021) A35

Authors:

N Maddox, Bs Frank, Aa Ponomareva, Matthew Jarvis, Eak Adams, R Davé, Ta Oosterloo, Mg Santos, Sl Blyth, M Glowacki, Rc Kraan-Korteweg, W Mulaudzi, B Namumba, I Prandoni, Sha Rajohnson, K Spekkens, Nj Adams, Raa Bowler, Jd Collier, I Heywood, S Sekhar, Ar Taylor

Abstract:

We present the H I emission project within the MIGHTEE survey, currently being carried out with the newly commissioned MeerKAT radio telescope. This is one of the first deep, blind, medium-wide interferometric surveys for neutral hydrogen (H I) ever undertaken, extending our knowledge of H I emission to z = 0.6. The science goals of this medium-deep, medium-wide survey are extensive, including the evolution of the neutral gas content of galaxies over the past 5 billion years. Simulations predict nearly 3000 galaxies over 0 <  z <  0.4 will be detected directly in H I, with statistical detections extending to z = 0.6. The survey allows us to explore H I as a function of galaxy environment, with massive groups and galaxy clusters within the survey volume. Additionally, the area is large enough to contain as many as 50 local galaxies with H I mass < 108 M⊙, which allows us to study the low-mass galaxy population. The 20 deg2 main survey area is centred on fields with exceptional multi-wavelength ancillary data, with photometry ranging from optical through far-infrared wavelengths, supplemented with multiple spectroscopic campaigns. We describe here the survey design and the key science goals. We also show first results from the Early Science observations, including kinematic modelling of individual sources, along with the redshift, H I, and stellar mass ranges of the sample to date.
More details from the publisher
Details from ORA
More details

Cross-correlating radio continuum surveys and CMB lensing: constraining redshift distributions, galaxy bias and cosmology

Monthly Notices of the Royal Astronomical Society Oxford University Press 502:2021 (2021) 876-887

Authors:

David Alonso, Matthew Jarvis, Emilio Bellini

Abstract:

We measure the harmonic-space auto-power spectrum of the galaxy overdensity in the LOFAR Two-metre Sky Survey (LoTSS) First Data Release and its cross correlation with the map of the lensing convergence of the cosmic microwave background (CMB) from the Planck collaboration. We report a ∼5σ detection of the cross-correlation. We show that the combination of the clustering power spectrum and CMB lensing cross-correlation allows us to place constraints on the high-redshift tail of the redshift distribution, one of the largest sources of uncertainty in the use of continuum surveys for cosmology. Our analysis shows a preference for a broader redshift tail than that predicted by the photometric redshifts contained in the LoTSS value added catalog, as expected, and more compatible with predictions from simulations and spectroscopic data. Although the ability of CMB lensing to constrain the width and tail of the redshift distribution could also be valuable for the analysis of current and future photometric weak lensing surveys, we show that its performance relies strongly on the redshift evolution of the galaxy bias. Assuming the redshift distribution predicted by the Square Kilometre Array Design simulations, we use our measurements to place constraints on the linear bias of radio galaxies and the amplitude of matter inhomogeneities σ8, finding σ8=0.69+0.14−0.21 assuming the galaxy bias scales with the inverse of the linear growth factor, and σ8=0.79+0.17−0.32 assuming a constant bias.
More details from the publisher
Details from ORA
More details

The rapid transition from star formation to AGN-dominated rest-frame ultraviolet light at z ≃ 4

Monthly Notices of the Royal Astronomical Society Oxford University Press 502:1 (2021) 662-677

Authors:

Raa Bowler, Nj Adams, Matthew Jarvis, B Häußler

Abstract:

With the advent of deep optical-to-near-infrared extragalactic imaging on the degree scale, samples of high-redshift sources are being selected that contain both bright star-forming (SF) galaxies and faint active galactic nuclei (AGN). In this study, we investigate the transition between SF- and AGN-dominated systems at z ≃ 4 in the rest-frame ultraviolet (UV). We find a rapid transition to AGN-dominated sources brightward of MUV ≃ −23.2. The effect is observed in the rest-frame UV morphology and size–luminosity relation, where extended clumpy systems become point-source-dominated, and also in the available spectra for the sample. These results allow us to derive the rest-frame UV luminosity function (LF) for the SF- and AGN-dominated subsamples. We find the SF-dominated LF is best fit with a double power law, with a lensed Schechter function being unable to explain the existence of extremely luminous SF galaxies at MUV ≃ −23.5. If we identify AGN-dominated sources according to a point-source morphology criterion, we recover the relatively flat faint-end slope of the AGN LF determined in previous studies. If we instead separate the LF according to the current spectroscopic AGN fraction, we find a steeper faint-end slope of α = −1.83 ± 0.11. Using a simple model to predict the rest-frame AGN LF from the z = 4 galaxy LF, we find that the increasing impact of host galaxy light on the measured morphology of faint AGN can explain our observations.
More details from the publisher
Details from ORA
More details
More details

MIGHTEE: are giant radio galaxies more common than we thought?

Monthly Notices of the Royal Astronomical Society Oxford University Press 501:3 (2020) 3833-3845

Authors:

J Delhaize, Ian Heywood, M Prescott, Matthew Jarvis, I Delvecchio, Ih Whittam, Sv White, Mj Hardcastle, Cl Hale, J Afonso, Y Ao, M Brienza, M Brüggen, Jd Collier, E Daddi, M Glowacki, N Maddox, Lk Morabito, I Prandoni, Z Randriamanakoto, S Sekhar, F An, Nj Adams, S Blyth, Rebecca Bowler, L Leeuw, L Marchetti, Sm Randriamampandry, K Thorat, N Seymour, O Smirnov, Ar Taylor, C Tasse, M Vaccari

Abstract:

We report the discovery of two new giant radio galaxies (GRGs) using the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. Both GRGs were found within a ∼1 deg2 region inside the COSMOS field. They have redshifts of z = 0.1656 and z = 0.3363 and physical sizes of 2.4 and 2.0 Mpc, respectively. Only the cores of these GRGs were clearly visible in previous high-resolution Very Large Array observations, since the diffuse emission of the lobes was resolved out. However, the excellent sensitivity and uv coverage of the new MeerKAT telescope allowed this diffuse emission to be detected. The GRGs occupy an unpopulated region of radio power – size parameter space. Based on a recent estimate of the GRG number density, the probability of finding two or more GRGs with such large sizes at z < 0.4 in a ∼1 deg2 field is only 2.7 × 10−6, assuming Poisson statistics. This supports the hypothesis that the prevalence of GRGs has been significantly underestimated in the past due to limited sensitivity to low surface brightness emission. The two GRGs presented here may be the first of a new population to be revealed through surveys like MIGHTEE that provide exquisite sensitivity to diffuse, extended emission.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet