Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

The XXL Survey: XLII. Detection and characterisation of the galaxy population of distant galaxy clusters in the XXL-N/VIDEO field: A tale of variety

Astronomy and Astrophysics EDP Sciences 642 (2020) A124

Authors:

A Trudeau, C Garrel, J Willis, M Pierre, F Gastaldello, L Chiappetti, S Ettori, K Umetsu, C Adami, N Adams, Raa Bowler, L Faccioli, B Haeussler, M Jarvis, E Koulouridis, Jp Le Fevre, F Pacaud, B Poggianti, T Sadibekova

Abstract:

Context. Distant galaxy clusters provide an effective laboratory in which to study galaxy evolution in dense environments and at early cosmic times. Aims. We aim to identify distant galaxy clusters as extended X-ray sources that are coincident with overdensities of characteristically bright galaxies. Methods. We used optical and near-infrared data from the Hyper Suprime-Cam and VISTA Deep Extragalactic Observations (VIDEO) surveys to identify distant galaxy clusters as overdensities of bright, zphot = 0:8 galaxies associated with extended X-ray sources detected in the ultimate XMM extragalactic survey (XXL). Results. We identify a sample of 35 candidate clusters at 0:80 = z = 1:93 from an approximately 4.5 deg2 sky area. This sample includes 15 newly discovered candidate clusters, ten previously detected but unconfirmed clusters, and ten spectroscopically confirmed clusters. Although these clusters host galaxy populations that display a wide variety of quenching levels, they exhibit well-defined relations between quenching, cluster-centric distance, and galaxy luminosity. The brightest cluster galaxies (BCGs) within our sample display colours that are consistent with a bimodal population composed of an old and red sub-sample together with a bluer, more diverse sub-sample. Conclusions The relation between galaxy masses and quenching seem to already be in place at z ~ 1, although there is no significant variation in the quenching fraction with the cluster-centric radius. The BCG bimodality might be explained by the presence of a younger stellar component in some BCGs, but additional data are needed to confirm this scenario.
More details from the publisher
Details from ORA
More details

Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)

Monthly Notices of the Royal Astronomical Society Oxford University Press 499:2 (2020) 1587-1606

Authors:

Sj Schmidt, Ai Malz, Jyh Soo, Ia Almosallam, M Brescia, S Cavuoti, J Cohen-Tanugi, Aj Connolly, J DeRose, Pe Freeman, Ml Graham, Kg Iyer, Matthew Jarvis, Jb Kalmbach, E Kovacs, Ab Lee, G Longo, Cb Morrison, Ja Newman, E Nourbakhsh, E Nuss, T Pospisil, H Tranin, Rh Wechsler, R Zhou, R Izbicki, LSST Dark Energy Sci Collaboration

Abstract:

Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics.
More details from the publisher
Details from ORA
More details

The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey (Corrigendum)

Astronomy & Astrophysics EDP Sciences 640 (2020) c4

Authors:

LK Morabito, JH Matthews, PN Best, G Gürkan, MJ Jarvis, I Prandoni, KJ Duncan, MJ Hardcastle, M Kunert-Bajraszewska, AP Mechev, S Mooney, J Sabater, HJA Röttgering, TW Shimwell, DJB Smith, C Tasse, WL Williams
More details from the publisher
More details

The relation between the diffuse X-ray luminosity and the radio power of the central AGN in galaxy groups

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 497:2 (2020) 2163-2174

Authors:

T Pasini, M Brueggen, F de Gasperin, L Birzan, E O'Sullivan, A Finoguenov, Imogen Whittam, Ian Heywood, Matt Jarvis, M Gitti, F Brighenti, Jd Collier, G Gozaliasl

Abstract:

Our understanding of how active galactic nucleus feedback operates in galaxy clusters has improved in recent years owing to large efforts in multiwavelength observations and hydrodynamical simulations. However, it is much less clear how feedback operates in galaxy groups, which have shallower gravitational potentials. In this work, using very deep Very Large Array and new MeerKAT observations from the MIGHTEE survey, we compiled a sample of 247 X-ray selected galaxy groups detected in the COSMOS field. We have studied the relation between the X-ray emission of the intra-group medium and the 1.4 GHz radio emission of the central radio galaxy. For comparison, we have also built a control sample of 142 galaxy clusters using ROSAT and NVSS data. We find that clusters and groups follow the same correlation between X-ray and radio emission. Large radio galaxies hosted in the centres of groups and merging clusters increase the scatter of the distribution. Using statistical tests and Monte Carlo simulations, we show that the correlation is not dominated by biases or selection effects. We also find that galaxy groups are more likely than clusters to host large radio galaxies, perhaps owing to the lower ambient gas density or a more efficient accretion mode. In these groups, radiative cooling of the intra-cluster medium could be less suppressed by active galactic nucleus heating. We conclude that the feedback processes that operate in galaxy clusters are also effective in groups.
More details from the publisher
Details from ORA
More details
Details from ArXiV

K-CLASH: Strangulation and ram pressure stripping in galaxy cluster members at 0.3 < z < 0.6

Monthly Notices of the Royal Astronomical Society Oxford University Press 496:3 (2020) 3841-3861

Authors:

Sam P Vaughan, Alfred L Tiley, Roger L Davies, Laura J Prichard, Scott M Croom, Martin Bureau, John P Stott, Andrew Bunker, Michele Cappellari, Behzad Ansarinejad, Matt J Jarvis

Abstract:

Galaxy clusters have long been theorized to quench the star formation of their members. This study uses integral-field unit observations from the K-band MultiObject Spectrograph (KMOS) – Cluster Lensing And Supernova survey with Hubble (CLASH) survey (K-CLASH) to search for evidence of quenching in massive galaxy clusters at redshifts 0.3 < z < 0.6. We first construct mass-matched samples of exclusively star-forming cluster and field galaxies, then investigate the spatial extent of their H α emission and study their interstellar medium conditions using emission line ratios. The average ratio of H α half-light radius to optical half-light radius ($r_{\mathrm{e}, {\rm {H}\,\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$) for all galaxies is 1.14 ± 0.06, showing that star formation is taking place throughout stellar discs at these redshifts. However, on average, cluster galaxies have a smaller $r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$ ratio than field galaxies: 〈$r_{\mathrm{e}, {\rm {H}\alpha }}/r_{\mathrm{e}, R_{\mathrm{c} } }$〉 = 0.96 ± 0.09 compared to 1.22 ± 0.08 (smaller at a 98 per cent credibility level). These values are uncorrected for the wavelength difference between H α emission and Rc-band stellar light but implementing such a correction only reinforces our results. We also show that whilst the cluster and field samples follow indistinguishable mass–metallicity (MZ) relations, the residuals around the MZ relation of cluster members correlate with cluster-centric distance; galaxies residing closer to the cluster centre tend to have enhanced metallicities (significant at the 2.6σ level). Finally, in contrast to previous studies, we find no significant differences in electron number density between the cluster and field galaxies. We use simple chemical evolution models to conclude that the effects of disc strangulation and ram-pressure stripping can quantitatively explain our observations.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet