Extracting the global signal from 21-cm fluctuations: The multi-tracer approach
Monthly Notices of the Royal Astronomical Society Oxford University Press (2019)
Abstract:
The multi-tracer technique employs a ratio of densities of two differently biased galaxy samples that trace the same underlying matter density field, and was proposed to alleviate the cosmic variance problem. Here we propose a novel application of this approach, applying it to two different tracers one of which is the 21-cm signal of neutral hydrogen from the epochs of reionization and comic dawn. The second tracer is assumed to be a sample of high-redshift galaxies, but the approach can be generalized and applied to other high-redshift tracers. We show that the anisotropy of the ratio of the two density fields can be used to measure the sky-averaged 21-cm signal, probe the spectral energy distribution of radiative sources that drive this signal, and extract large-scale properties of the second tracer, e.g., the galaxy bias. Using simulated 21-cm maps and mock galaxy samples, we find that the method works well for an idealized galaxy survey. However, in the case of a more realistic galaxy survey which only probes highly biased luminous galaxies, the inevitable Poisson noise makes the reconstruction far more challenging. This difficulty can be mitigated with the greater sensitivity of future telescopes along with larger survey volumes.Measuring the H I mass function below the detection threshold
Monthly Notices of the Royal Astronomical Society Oxford University Press 491:1 (2019) 1227-1242
Abstract:
We present a Bayesian stacking technique to directly measure the H i mass function (HIMF) and its evolution with redshift using galaxies formally below the nominal detection threshold. We generate galaxy samples over several sky areas given an assumed HIMF described by a Schechter function and simulate the H i emission lines with different levels of background noise to test the technique. We use Multinest to constrain the parameters of the HIMF in a broad redshift bin, demonstrating that the HIMF can be accurately reconstructed, using the simulated spectral cube far below the H i mass limit determined by the 5σ flux-density limit, i.e. down to MHI = 107.5 M⊙ over the redshift range 0 < z < 0.55 for this particular simulation, with a noise level similar to that expected for the MIGHTEE survey. We also find that the constraints on the parameters of the Schechter function, φ⋆, M⋆ and α can be reliably fit, becoming tighter as the background noise decreases as expected, although the constraints on the redshift evolution are not significantly affected. All the parameters become better constrained as the survey area increases. In summary, we provide an optimal method for estimating the H i mass at cosmological distances that allows us to constrain the H i mass function below the detection threshold in forthcoming H i surveys. This study is a first step towards the measurement of the HIMF at high (z > 0.1) redshifts.Comparing Galaxy Clustering in Horizon-AGN Simulated Lightcone Mocks and VIDEO Observations
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)
Abstract:
Hydrodynamical cosmological simulations have recently made great advances in reproducing galaxy mass assembly over cosmic time - as often quantified from the comparison of their predicted stellar mass functions to observed stellar mass functions from data. In this paper we compare the clustering of galaxies from the hydrodynamical cosmological simulated lightcone Horizon-AGN, to clustering measurements from the VIDEO survey observations. Using mocks built from a VIDEO-like photometry, we first explore the bias introduced into clustering measurements by using stellar masses and redshifts derived from SED-fitting, rather than the intrinsic values. The propagation of redshift and mass statistical and systematic uncertainties in the clustering measurements causes us to underestimate the clustering amplitude. We find then that clustering and halo occupation distribution (HOD) modelling results are qualitatively similar in Horizon-AGN and VIDEO. However at low stellar masses Horizon-AGN underestimates the observed clustering by up to a factor of ~3, reflecting the known excess stellar mass to halo mass ratio for Horizon-AGN low mass haloes, already discussed in previous works. This reinforces the need for stronger regulation of star formation in low mass haloes in the simulation. Finally, the comparison of the stellar mass to halo mass ratio in the simulated catalogue, inferred from angular clustering, to that directly measured from the simulation, validates HOD modelling of clustering as a probe of the galaxy-halo connection.Using sparse Gaussian processes for predicting robust inertial confinement fusion implosion yields
IEEE Transactions on Plasma Science IEEE (2019) 1-6
Accretion and star formation in ‘radio-quiet’ quasars
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 15:S356 (2019) 204-208