Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

The new galaxy evolution paradigm revealed by the Herschel surveys

Monthly Notices of the Royal Astronomical Society Oxford University Press 473:3 (2017) 3507-3524

Authors:

S Eales, D Smith, N Bourne, J Loveday, K Rowlands, PVD Werf, S Driver, L Dunne, S Dye, C Furlanetto, RJ Ivison, S Maddox, A Robotham, MWL Smith, EN Taylor, E Valiante, A Wright, P Cigan, G De Zotti, Matthew J Jarvis, L Marchetti, MJ Michałowski, S Phillipps, S Viaene, C Vlahakis

Abstract:

The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a a single Galaxy Sequence (GS) rather than a star-forming `main sequence' and a separate region of `passive' or `red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically-red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.
More details from the publisher
Details from ORA
More details
Details from ArXiV

MeerKLASS: MeerKAT large area synoptic survey

(2017)

Authors:

M Cluver, M Hilton, M Jarvis, GIG Jozsa, L Leeuw, O Smirnov, R Taylor, F Abdalla, J Afonso, D Alonso, D Bacon, BA Bassett, G Bernardi, P Bull, S Camera, HC Chiang, S Colafrancesco, Pedro Ferreira, J Fonseca, KVD Heyden, I Heywood, K Knowles, M Lochner, Y-Z Ma, R Maartens, S Makhathini, K Moodley, A Pourtsidou, M Prescott, J Sievers, K Spekkens, M Vaccari, A Weltman, I Whittam, A Witzemann, L Wolz, JTL Zwart

Abstract:

We discuss the ground-breaking science that will be possible with a wide area survey, using the MeerKAT telescope, known as MeerKLASS (MeerKAT Large Area Synoptic Survey). The current specifications of MeerKAT make it a great fit for science applications that require large survey speeds but not necessarily high angular resolutions. In particular, for cosmology, a large survey over $\sim 4,000 \, {\rm deg}^2$ for $\sim 4,000$ hours will potentially provide the first ever measurements of the baryon acoustic oscillations using the 21cm intensity mapping technique, with enough accuracy to impose constraints on the nature of dark energy. The combination with multi-wavelength data will give unique additional information, such as exquisite constraints on primordial non-Gaussianity using the multi-tracer technique, as well as a better handle on foregrounds and systematics. Such a wide survey with MeerKAT is also a great match for HI galaxy studies, providing unrivalled statistics in the pre-SKA era for galaxies resolved in the HI emission line beyond local structures at z > 0.01. It will also produce a large continuum galaxy sample down to a depth of about 5\,$\mu$Jy in L-band, which is quite unique over such large areas and will allow studies of the large-scale structure of the Universe out to high redshifts, complementing the galaxy HI survey to form a transformational multi-wavelength approach to study galaxy dynamics and evolution. Finally, the same survey will supply unique information for a range of other science applications, including a large statistical investigation of galaxy clusters as well as produce a rotation measure map across a huge swathe of the sky. The MeerKLASS survey will be a crucial step on the road to using SKA1-MID for cosmological applications and other commensal surveys, as described in the top priority SKA key science projects (abridged).
Details from ORA
Details from ArXiV

Environmental quenching and galactic conformity in the galaxy cross-correlation signal

Monthly Notices of the Royal Astronomical Society Oxford University Press (2017)

Authors:

Peter Hatfield, Matthew Jarvis

Abstract:

It has long been known that environment has a large effect on star formation in galaxies. There are several known plausible mechanisms to remove the cool gas needed for star formation, such as strangulation, harassment and ram-pressure stripping. It is unclear which process is dominant, and over what range of stellar mass. In this paper, we find evidence for suppression of the cross-correlation function between massive galaxies and less massive star-forming galaxies, giving a measure of how less likely a galaxy is to be star-forming in the vicinity of a more massive galaxy. We develop a formalism for modelling environmental quenching mechanisms within the Halo Occupation Distribution formalism. We find that at $z \sim 2$ environment is not a significant factor in determining quenching of star-forming galaxies, and that galaxies are quenched with similar probabilities in group environments as they are globally. However, by $z \sim 0.5$ galaxies are much less likely to be star forming when in a group environment than when not. This increased probability of being quenched does not appear to have significant radial dependence within the halo, supportive of the quenching being caused by the halting of fresh inflows of pristine gas, as opposed to by tidal stripping. Furthermore, by separating the massive sample into passive and star-forming, we see that this effect is further enhanced when the central galaxy is passive. This effect is present only in the 1-halo term (within a halo) at high redshifts ($z>1$), but is apparent in the 2-halo term at lower redshifts ($z<1$), a manifestation of galactic conformity.

More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Calibrating photometric redshifts with intensity mapping observations

Physical Review D American Physical Society 96:4 (2017) 043515

Authors:

David Alonso, Pedro G Ferreira, Matthew Jarvis, K Moodley

Abstract:

Imaging surveys of galaxies will have a high number density and angular resolution yet a poor redshift precision. Intensity maps of neutral hydrogen will have accurate redshift resolution yet will not resolve individual sources. Using this complementarity, we show how the clustering redshifts approach proposed for spectroscopic surveys can also be used in combination with intensity mapping observations to calibrate the redshift distribution of galaxies in an imaging survey and, as a result, reduce uncertainties in photometric-redshift measurements. We show how the intensity mapping surveys to be carried out with the MeerKAT, HIRAX and SKA instruments can improve photometric-redshift uncertainties to well below the requirements of DES and LSST. The effectiveness of this method as a function of instrumental parameters, foreground subtraction and other potential systematic errors is discussed in detail.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Large sSynoptic Survey Telescope Galaxies Science Roadmap

(2017)

Authors:

BE Robertson, M Banerji, MC Cooper, Roger Davies, SP Driver, Ferguson, HC Ferguson, E Gawiser, S Kaviraj, JH Knapen, Chris Lintott, J Lotz, JA Newman, DJ Norman, N Padilla, SJ Schmidt, GP Smith, JA Tyson, Aprajita Verma, I Zehavi, L Armus, C Avestruz, LF Barrientos, Rebecca AA Bowler, MN Bremer, CJ Conselice, J Davies, R Demarco, ME Dickinson, G Galaz, A Grazian, BW Holwerda, Matthew Jarvis, V Kasliwal, I Lacerna, J Loveday, P Marshall, E Merlin, NR Napolitano, TH Puzia, A Robotham, S Salim, M Sereno, GF Snyder, JP Stott, PB Tissera, N Werner, P Yoachim, KD Borne

Abstract:

The Large Synoptic Survey Telescope (LSST) will enable revolutionary studies of galaxies, dark matter, and black holes over cosmic time. The LSST Galaxies Science Collaboration has identified a host of preparatory research tasks required to leverage fully the LSST dataset for extragalactic science beyond the study of dark energy. This Galaxies Science Roadmap provides a brief introduction to critical extragalactic science to be conducted ahead of LSST operations, and a detailed list of preparatory science tasks including the motivation, activities, and deliverables associated with each. The Galaxies Science Roadmap will serve as a guiding document for researchers interested in conducting extragalactic science in anticipation of the forthcoming LSST era.
More details from the publisher
Details from ORA
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet