Improving Photometric Redshift Estimation using GPz: size information, post processing and improved photometry
Monthly Notices of the Royal Astronomical Society Oxford University Press 475:1 (2017) 331-342
Abstract:
The next generation of large scale imaging surveys (such as those conducted with the Large Synoptic Survey Telescope and Euclid) will require accurate photometric redshifts in order to optimally extract cosmological information. Gaussian Processes for photometric redshift estimation (GPz) is a promising new method that has been proven to provide efficient, accurate photometric redshift estimations with reliable variance predictions. In this paper, we investigate a number of methods for improving the photometric redshift estimations obtained using GPz (but which are also applicable to others). We use spectroscopy from the Galaxy and Mass Assembly Data Release 2 with a limiting magnitude of r<19.4 along with corresponding Sloan Digital Sky Survey visible (ugriz) photometry and the UKIRT Infrared Deep Sky Survey Large Area Survey near-IR (YJHK) photometry. We evaluate the effects of adding near-IR magnitudes and angular size as features for the training, validation and testing of GPz and find that these improve the accuracy of the results by ~15-20 per cent. In addition, we explore a post-processing method of shifting the probability distributions of the estimated redshifts based on their Quantile-Quantile plots and find that it improves the bias by ~40 per cent. Finally, we investigate the effects of using more precise photometry obtained from the Hyper Suprime-Cam Subaru Strategic Program Data Release 1 and find that it produces significant improvements in accuracy, similar to the effect of including additional features.The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field
Monthly Notices of the Royal Astronomical Society Oxford University Press 474:3 (2017) 4133-4150
Abstract:
Dark matter haloes in which galaxies reside are likely to have a significant impact on their evolution. We investigate the link between dark matter haloes and their constituent galaxies by measuring the angular two-point correlation function of radio sources, using recently released 3 GHz imaging over $\sim 2 \ \mathrm{deg}^2$ of the COSMOS field. We split the radio source population into Star Forming Galaxies (SFGs) and Active Galactic Nuclei (AGN), and further separate the AGN into radiatively efficient and inefficient accreters. Restricting our analysis to $z<1$, we find SFGs have a bias, $b = 1.5 ^{+0.1}_{-0.2}$, at a median redshift of $z=0.62$. On the other hand, AGN are significantly more strongly clustered with $b = 2.1\pm 0.2$ at a median redshift of 0.7. This supports the idea that AGN are hosted by more massive haloes than SFGs. We also find low-accretion rate AGN are more clustered ($b = 2.9 \pm 0.3$) than high-accretion rate AGN ($b = 1.8^{+0.4}_{-0.5}$) at the same redshift ($z \sim 0.7$), suggesting that low-accretion rate AGN reside in higher mass haloes. This supports previous evidence that the relatively hot gas that inhabits the most massive haloes is unable to be easily accreted by the central AGN, causing them to be inefficient. We also find evidence that low-accretion rate AGN appear to reside in halo masses of $M_{h} \sim 3-4 \times 10^{13}h^{-1}$M$_{\odot}$ at all redshifts. On the other hand, the efficient accreters reside in haloes of $M_{h} \sim 1-2 \times 10^{13}h^{-1}$M$_{\odot}$ at low redshift but can reside in relatively lower mass haloes at higher redshifts. This could be due to the increased prevalence of cold gas in lower mass haloes at $z \ge 1$ compared to $z<1$.Photometric redshifts for the next generation of deep radio continuum surveys – I. Template fitting
Monthly Notices of the Royal Astronomical Society Oxford University Press 473:2 (2017) 2655-2672
Abstract:
We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ~4500 radio continuum sources with spectroscopic redshifts relative to those of ~63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties.We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.The new galaxy evolution paradigm revealed by the Herschel surveys
Monthly Notices of the Royal Astronomical Society Oxford University Press 473:3 (2017) 3507-3524
Abstract:
The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a a single Galaxy Sequence (GS) rather than a star-forming `main sequence' and a separate region of `passive' or `red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically-red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.MeerKLASS: MeerKAT large area synoptic survey
(2017)