Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

The origin of radio emission in broad absorption line quasars: Results from the LOFAR Two-metre Sky Survey

Astronomy and Astrophysics EDP Sciences 622 (2018) A15

Authors:

Leah Morabito, James Matthews, P Best, G Gurkan, Matthew Jarvis, I Prandoni, K Duncan, M Hardcastle, M Kunert-Bajraszewska, A Mechev, S Mooney, J Sabeter, H Rottgering, T Shimwell, D Smith, C Tasse, W Williams

Abstract:

We present a study of the low-frequency radio properties of broad absorption line quasars (BALQSOs) from the LOFAR Two-metre Sky-Survey Data Release 1 (LDR1). The value-added LDR1 catalogue contains Pan-STARRS counterparts, which we match with the Sloan Digital Sky Survey (SDSS) DR7 and DR12 quasar catalogues. We find that BALQSOs are twice as likely to be detected at 144 MHz than their non-BAL counterparts, and BALQSOs with low-ionisation species present in their spectra are three times more likely to be detected than those with only high-ionisation species. The BALQSO fraction at 144 MHz is constant with increasing radio luminosity, which is inconsistent with previous results at 1.4 GHz, indicating that observations at the different frequencies may be tracing different sources of radio emission. We cross-match radio sources between the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) survey and LDR1, which provides a bridge via the LDR1 Pan-STARRS counterparts to identify BALQSOs in SDSS. Consequently we expand the sample of BALQSOs detected in FIRST by a factor of three. The LDR1-detected BALQSOs in our sample are almost exclusively radio-quiet (log(R144 MHz) <2), with radio sizes at 144 MHz typically less than 200 kpc; these radio sizes tend to be larger than those at 1.4 GHz, suggesting more extended radio emission at low frequencies. We find that although the radio detection fraction increases with increasing balnicity index (BI), there is no correlation between BI and either low-frequency radio power or radio-loudness. This suggests that both radio emission and BI may be linked to the same underlying process, but are spatially distinct phenomena.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The far-infrared radio correlation at low radio frequency with LOFAR/H-ATLAS

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:4 (2018) 5625-5644

Authors:

SC Read, DJB Smith, G Gürkan, MJ Hardcastle, WL Williams, PN Best, E Brinks, G Calistro-Rivera, KT Chyzy, K Duncan, L Dunne, Matthew Jarvis, Leah K Morabito, I Prandoni, HJA Röttgering, J Sabater, S Viaene

Abstract:

The radio and far-infrared luminosities of star-forming galaxies are tightly correlated over several orders of magnitude; this is known as the far-infrared radio correlation (FIRC). Previous studies have shown that a host of factors conspire to maintain a tight and linear FIRC, despite many models predicting deviation. This discrepancy between expectations and observations is concerning since a linear FIRC underpins the use of radio luminosity as a star-formation rate indicator. Using LOFAR 150MHz , FIRST 1.4GHz , and Herschel  infrared luminosities derived from the new LOFAR/H-ATLAS catalogue, we investigate possible variation in the monochromatic ( 250μm) FIRC at low and high radio frequencies. We use statistical techniques to probe the FIRC for an optically selected sample of 4082 emission-line classified star-forming galaxies as a function of redshift, effective dust temperature, stellar mass, specific star formation rate, and mid-infrared colour (an empirical proxy for specific star formation rate). Although the average FIRC at high radio frequency is consistent with expectations based on a standard power-law radio spectrum, the average correlation at 150MHz is not. We see evidence for redshift evolution of the FIRC at 150MHz⁠, and find that the FIRC varies with stellar mass, dust temperature, and specific star formation rate, whether the latter is probed using MAGPHYS fitting, or using mid-infrared colour as a proxy. We can explain the variation, to within 1σ, seen in the FIRC over mid-infrared colour by a combination of dust temperature, redshift, and stellar mass using a Bayesian partial correlation technique.
More details from the publisher
Details from ORA
More details
More details

The Stripe 82 1-2 GHz Very Large Array Snapshot Survey: multiwavelength counterparts

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 707-721

Authors:

M Prescott, IH Whittam, Matthew Jarvis, K McAlpine, LL Richter, S Fine, T Mauch, Ian Heywood, M Vaccari

Abstract:

Published by Oxford University Press on behalf of the Royal Astronomical Society. We have combined spectroscopic and photometric data from the Sloan Digital Sky Survey with 1.4 GHz radio observations, conducted as part of the Stripe 82 1-2 GHz Snapshot Survey using the Karl G. Jansky Very Large Array, which covers ~100 sq deg, to a flux limit of 88 μJy rms. Cross-matching the 11 768 radio source components with optical data via visual inspection results in a final sample of 4794 cross-matched objects, of which 1996 have spectroscopic redshifts and 2798 objects have photometric redshifts. Three previously undiscovered giant radio galaxies were found during the cross-matching process, which would have been missed using automated techniques. For the objects with spectroscopy, we separate radio-loud active galactic nuclei (AGN) and star-forming galaxies (SFGs) using three diagnostics and then further divide our radio-loud AGN into the high and low excitation radio galaxy (HERG and LERG) populations. A control-matched sample of HERGs and LERGs, matched on stellar mass, redshift, and radio luminosity, reveals that the host galaxies of LERGs are redder and more concentrated than HERGs. By combining with near-infrared data, we demonstrate that LERGs also follow a tight K - z relationship. These results imply the LERG populations are hosted by population ofmassive, passively evolving early-type galaxies. We go on to show that HERGs, LERGs, quasars, and SFGs in our sample all reside in different regions of aWide-field Infrared Survey Explorer colour-colour diagram. This cross-matched sample bridges the gap between previous 'wide but shallow' and 'deep but narrow' samples and will be useful for a number of future investigations.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The Stripe 82 1–2 GHz Very Large Array Snapshot Survey: host galaxy properties and accretion rates of radio galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 358-370

Authors:

IH Whittam, M Prescott, K McAlpine, Matthew Jarvis, I Heywood

Abstract:

A sample of 1161 radio galaxies with 0.01 <z< 0.7 and 1021 < L1.4 GHz/W ˜Hz−1 < 1027 is selected from the Stripe 82 1–2 GHz Karl G. Jansky Very Large Array Snapshot Survey, which covers 100 sq. deg. and has a 1σ noise level of 88 μJy beam−1. Optical spectra are used to classify these sources as high excitation and low excitation radio galaxies (HERGs and LERGs), resulting in 60 HERGs, 149 LERGs, and 600 ‘probable LERGs’. The host galaxies of the LERGs have older stellar populations than those of the HERGs, in agreement with previous results in the literature. We find that the HERGs tend to have higher Eddington-scaled accretion rates than the LERGs but that there is some overlap between the two distributions. We show that the properties of the host galaxies vary continuously with accretion rate, with the most slowly accreting sources having the oldest stellar populations, consistent with the idea that these sources lack a supply of cold gas. We find that 84 per cent of our sample releases more than 10 per cent of their accretion power in their jets, showing that mechanical active galactic nucleus (AGN) feedback is significantly underestimated in many hydrodynamical simulations. There is a scatter of ∼2 dex in the fraction of the accreted AGN power deposited back into the interstellar medium in mechanical form, showing that the assumption in many simulations that there is a direct scaling between accretion rate and radio-mode feedback does not necessarily hold. We also find that mechanical feedback is significant for many of the HERGs in our sample as well as the LERGs.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, design and target catalogue

Monthly Notices of the Royal Astronomical Society Oxford University Press 480:1 (2018) 768-799

Authors:

LJM Davies, ASG Robotham, SP Driver, CP Lagos, L Cortese, E Mannering, C Foster, C Lidman, A Hashemizadeh, S Koushan, S O’Toole, IK Baldry, M Bilicki, J Bland-Hawthorn, MN Bremer, MJI Brown, JJ Bryant, B Catinella, SM Croom, MW Grootes, BW Holwerda, Matthew J Jarvis, N Maddox, M Meyer, AJ Moffett

Abstract:

The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ∼60 000 galaxies to Y < 21.2mag, over ∼6 deg2 in threewell-studied deep extragalactic fields (CosmicOrigins Survey field, COSMOS; Extended Chandra Deep Field South, ECDFS; and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS – all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of near-infrared colours and has been validated by visual inspection. To maximize our observing efficiency for faint targets, we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night’s observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • Current page 29
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet