Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Overview of cosmology with the SKA

Proceedings of Science 9-13-June-2014 (2014)

Authors:

R Maartens, FB Abdalla, M Jarvis, MG Santos

Abstract:

The new frontier of cosmology will be led by three-dimensional surveys of the large-scale structure of the Universe. Based on its all-sky surveys and redshift depth, the SKA is destined to revolutionize cosmology, in combination with future optical/ infrared surveys such as Euclid and LSST. Furthermore, we will not have to wait for the full deployment of the SKA in order to see transformational science. In the first phase of deployment (SKA1), all-sky HI intensity mapping surveys and all-sky continuum surveys are forecast to be at the forefront on the major questions of cosmology. We give a broad overview of the major contributions predicted for the SKA. The SKA will not only deliver precision cosmology - it will also probe the foundations of the standard model and open the door to new discoveries on large-scale features of the Universe.

Synergy between the large synoptic survey telescope and the square kilometre array

Proceedings of Science 9-13-June-2014 (2014)

Authors:

D Bacon, S Bridle, FB Abdalla, M Brown, P Bull, S Camera, R Fender, K Grainge, Ž Ivezíc, M Jarvis, N Jackson, D Kirk, B Mann, J McEwen, J McKean, J Newman, A Raccanelli, M Sahlén, M Santos, A Tyson, GB Zhao

Abstract:

We provide an overview of the science benefits of combining information from the Square Kilometre Array (SKA) and the Large Synoptic Survey Telescope (LSST). We first summarise the capabilities and timeline of the LSST and overview its science goals. We then discuss the science questions in common between the two projects, and how they can be best addressed by combining the data from both telescopes. We describe how weak gravitational lensing and galaxy clustering studies with LSST and SKA can provide improved constraints on the causes of the cosmological acceleration. We summarise the benefits to galaxy evolution studies of combining deep optical multi-band imaging with radio observations. Finally, we discuss the excellent match between one of the most unique features of the LSST, its temporal cadence in the optical waveband, and the time resolution of the SKA.
Details from ArXiV

The SKA view of the interplay between SF and AGN Activity, and its role in Galaxy evolution

Proceedings of Science 9-13-June-2014 (2014)

Authors:

K Mcalpine, I Prandoni, M Jarvis, N Seymour, P Padovani, P Best, C Simpson, D Guidetti, E Murphy, M Huynh, M Vaccari, S White, R Beswick, J Afonso, M Magliocchetti, M Bondi

Abstract:

It has become apparent that active galactic nuclei (AGN) may have a significant impact on the growth and evolution of their host galaxies and vice versa but a detailed understanding of the interplay between these processes remains elusive. Deep radio surveys provide a powerful, obscuration-independent tool for measuring both star formation and AGN activity in highredshift galaxies. Multiwavelength studies of deep radio fields show a composite population of star-forming galaxies and AGN, with the former dominating at the lowest flux densities (S1:4GHz <100 mJy). The sensitivity and resolution of the SKA will allow us to identify, and separately trace, the total star formation in the bulges of individual high-redshift galaxies, the related nuclear activity and any star formation occurring on larger scales within a disc. We will therefore gain a detailed picture of the apparently simultaneous development of stellar populations and black holes in the redshift range where both star-formation and AGN activity peak (1z4). In this chapter we discuss the role of the SKA in studying the connection between AGN activity and galaxy evolution, and the most critical technical requirements for such of studies.

The astrophysics of star formation across cosmic time at &10 GHz with the square kilometre array

Proceedings of Science 9-13-June-2014 (2014)

Authors:

EJ Murphy, MT Sargent, RJ Beswick, C Dickinson, I Heywood, LK Hunt, MT Hyunh, M Jarvis, A Karim, M Krause, I Prandoni, N Seymour, E Schinnerer, FS Tabatabaei, J Wagg

Abstract:

In this chapter, we highlight a number of science investigations that are enabled by the inclusion of Band 5 (4:613:8 GHz) for SKA1-MID science operations, while focusing on the astrophysics of star formation over cosmic time. For studying the detailed astrophysics of star formation at highredshift, surveys at frequencies &10 GHz have the distinct advantage over traditional ∼1.4 GHz surveys as they are able to yield higher angular resolution imaging while probing higher rest frame frequencies of galaxies with increasing redshift, where emission of star-forming galaxies becomes dominated by thermal (free-free) radiation. In doing so, surveys carried out at &10 GHz provide a robust, dust-unbiased measurement of the massive star formation rate by being highly sensitive to the number of ionizing photons that are produced. To access this powerful star formation rate diagnostic requires that Band 5 be available for SKA1-MID. We additionally present a detailed science case for frequency coverage extending up to 30 GHz during full SKA2 operations, as this allows for highly diverse science while additionally providing contiguous frequency coverage between the SKA and ALMA, which will likely be the two most powerful interferometers for the coming decades. To enable this synergy, it is crucial that the dish design of the SKA be flexible enough to include the possibility of being fit with receivers operating up to 30 GHz.
Details from ArXiV

Unravelling lifecycles & physics of radio-loud AGN in the SKA era

Proceedings of Science 9-13-June-2014 (2014)

Authors:

ADK Nska, MJ Hardcastle, CA Jackson, T An, WA Baan, MJ Jarvis

Abstract:

Radio-loud AGN (> 1022 W Hz-1 at 1.4 GHz) will be the dominant bright source population detected with the SKA. The high resolution that the SKA will provide even in wide-area surveys will mean that, for the first time sensitive, multi-frequency total intensity and polarisation imaging of large samples of radio-loud active galactic nuclei (AGN) will become available. The unprecedented sensitivity of the SKA coupled with its wide field of view capabilities will allow identification of objects of the same morphological type (i.e. the entire FR I, low- and high luminosity FR II, disturbed morphology as well as weak radio-emitting AGN populations) up to high redshifts (z ∼ 4 and beyond), and at the same stage of their lives, from the youngest CSS/GPS sources to giant and fading (dying) sources, through to those with restarted activity radio galaxies and quasars. Critically, the wide frequency coverage of the SKA will permit analysis of same-epoch rest-frame radio properties, and the sensitivity and resolution will allow full cross- identification with multi-waveband data, further revealing insights into the physical processes driving the evolution of these radio sources. In this chapter of the SKA Science Book we give a summary of the main science drivers in the studies of lifecycles and detailed physics of radio-loud AGN, which include radio and kinetic luminosity functions, AGN feedback, radio-AGN triggering, radio-loud AGN unification and cosmological studies. We discuss the best parameters for the proposed SKA continuum surveys, both all-sky and deep field, in the light of these studies.
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Current page 54
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet