Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Matt Jarvis

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Cosmology
  • Galaxy formation and evolution
  • Hintze Centre for Astrophysical Surveys
  • MeerKAT
  • Rubin-LSST
  • The Square Kilometre Array (SKA)
Matt.Jarvis@physics.ox.ac.uk
Telephone: 01865 (2)83654
Denys Wilkinson Building, room 703
  • About
  • Publications

Galaxy And Mass Assembly (GAMA): Spectroscopic analysis

Monthly Notices of the Royal Astronomical Society 430:3 (2013) 2047-2066

Authors:

AM Hopkins, SP Driver, S Brough, MS Owers, AE Bauer, MLP Gunawardhana, ME Cluver, M Colless, C Foster, MA Lara-López, I Roseboom, R Sharp, O Steele, D Thomas, IK Baldry, MJI Brown, J Liske, P Norberg, ASG Robotham, S Bamford, J Bland-Hawthorn, MJ Drinkwater, J Loveday, M Meyer, JA Peacock, R Tuffs, N Agius, M Alpaslan, E Andrae, E Cameron, S Cole, JHY Ching, L Christodoulou, C Conselice, S Croom, NJG Cross, R De Propris, J Delhaize, L Dunne, S Eales, S Ellis, CS Frenk, AW Graham, MW Grootes, B Häußler, C Heymans, D Hill, B Hoyle, M Hudson, M Jarvis, J Johansson, DH Jones, E van Kampen, L Kelvin, K Kuijken, A López-Sánchez, S Maddox, B Madore, C Maraston, T McNaught-Roberts, RC Nichol, S Oliver, H Parkinson, S Penny, S Phillipps, KA Pimbblet, T Ponman, CC Popescu, M Prescott, R Proctor, EM Sadler, AE Sansom, M Seibert, L Staveley-Smith, W Sutherland, E Taylor, L Van Waerbeke, JA Vázquez-Mata, S Warren, DB Wijesinghe, V Wild, S Wilkins

Abstract:

The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ~300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s-1 to σv ≈ 100 km s-1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 λ 8850Å at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10-20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [NII]/Hα versus [OIII]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

Mining the Herschel-astrophysical terahertz large area survey: Submillimetre-selected blazars in equatorial fields

Monthly Notices of the Royal Astronomical Society 430:3 (2013) 1566-1577

Authors:

M López-Caniego, J González-Nuevo, M Massardi, L Bonavera, D Herranz, M Negrello, G De Zotti, FJ Carrera, L Danese, S Fleuren, M Hardcastle, MJ Jarvis, HR Klöckner, T Mauch, P Procopio, S Righini, W Sutherland, R Auld, M Baes, S Buttiglione, CJR Clark, A Cooray, A Dariush, L Dunne, S Dye, S Eales, R Hopwood, C Hoyos, E Ibar, RJ Ivison, S Maddox, E Valiante

Abstract:

The Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) provides an unprecedented opportunity to search for blazars at sub-mm wavelengths. We cross-matched the Faint Images of the Radio Sky at Twenty-cm (FIRST) radio source catalogue with the 11 655 sources brighter than 35 mJy at 500 μm in the ∼135 deg2 of the sky covered by the H-ATLAS equatorial fields at 9h and 15h, plus half of the field at 12h. We found that 379 of the H-ATLAS sources have a FIRST counterpart within 10 arcsec, including eight catalogued blazars (plus one known blazar that was found at the edge of one of the H-ATLAS maps). To search for additional blazar candidates we have devised new diagnostic diagrams and found that known blazars occupy a region of the log(S500μm/S350μm) versus log(S500μm/S1.4 GHz) plane separated from that of sub-mm sources with radio emission powered by star formation, but shared with radio galaxies and steep-spectrum radio quasars. Using this diagnostic we have selected 12 further possible candidates that turn out to be scattered in the (r-z) versus (u-r) plane or in the Wide-Field Infrared Survey Explorer colour-colour diagram, where known blazars are concentrated in well defined strips. This suggests that the majority of them are not blazars. Based on an inspection of all the available photometric data, including unpublished VISTA Kilo-degree Infrared Galaxy survey photometry and new radio observations, we found that the spectral energy distributions (SEDs) of only one out of the 12 newly selected sources are compatible with being synchrotron dominated at least up to 500 μm, i.e. with being a blazar. Another object may consist of a faint blazar nucleus inside a bright star-forming galaxy. The possibility that some blazar hosts are endowed with active star formation is supported by our analysis of the SEDs of Planck Early Release Compact Source Catalogue blazars detected at both 545 and 857 GHz. The estimated rest-frame synchrotron peak frequencies of H-ATLAS blazars are in the range 11.5 ≤ log (νpeak, Hz) ≤ 13.7, implying that these objects are low synchrotron peak. Six of them also show evidence of an ultraviolet excess that can be attributed to emission from the accretion disc. Allowing for the possibility of misidentifications and of contamination of the 500 μm flux density by the dusty torus or by the host galaxy, we estimate that there are seven or eight pure synchrotron sources brighter than S500μm = 35 mJy over the studied area, a result that sets important constraints on blazar evolutionary models. © 2013 The Author. Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details

GAMA/H-ATLAS: THE DUST OPACITY–STELLAR MASS SURFACE DENSITY RELATION FOR SPIRAL GALAXIES

The Astrophysical Journal American Astronomical Society 766:1 (2013) 59

Authors:

MW Grootes, RJ Tuffs, CC Popescu, B Pastrav, E Andrae, M Gunawardhana, LS Kelvin, J Liske, M Seibert, EN Taylor, Alister W Graham, M Baes, IK Baldry, N Bourne, S Brough, A Cooray, A Dariush, G De Zotti, SP Driver, L Dunne, H Gomez, AM Hopkins, R Hopwood, M Jarvis, J Loveday, S Maddox, BF Madore, MJ Michałowski, P Norberg, HR Parkinson, M Prescott, ASG Robotham, DJB Smith, D Thomas, E Valiante
More details from the publisher
Details from ArXiV

Herschel-ATLAS/GAMA: A difference between star formation rates in strong-line and weak-line radio galaxies

Monthly Notices of the Royal Astronomical Society 429:3 (2013) 2407-2424

Authors:

MJ Hardcastle, JHY Ching, JS Virdee, MJ Jarvis, SM Croom, EM Sadler, T Mauch, DJB Smith, JA Stevens, M Baes, IK Baldry, S Brough, A Cooray, A Dariush, G De Zotti, S Driver, L Dunne, S Dye, S Eales, R Hopwood, J Liske, S Maddox, MJ Michałowski, EE Rigby, ASG Robotham, O Steele, D Thomas, E Valiante

Abstract:

We have constructed a sample of radio-loud objects with optical spectroscopy from the Galaxy and Mass Assembly (GAMA) project over the Herschel Astrophysical Terahertz Large Area Survey (Herschel-ATLAS) Phase 1 fields. Classifying the radio sources in terms of their optical spectra, we find that strong-emission-line sources ('high-excitation radio galaxies') have, on average, a factor of ~4 higher 250-μm Herschel luminosity than weak-line ('lowexcitation') radio galaxies and are also more luminous than magnitude-matched radio-quiet galaxies at the same redshift. Using all five H-ATLAS bands, we show that this difference in luminosity between the emission-line classes arises mostly from a difference in the average dust temperature; strong-emission-line sources tend to have comparable dust masses to, but higher dust temperatures than, radio galaxies with weak emission lines. We interpret this as showing that radio galaxies with strong nuclear emission lines are much more likely to be associated with star formation in their host galaxy, although there is certainly not a one-to-one relationship between star formation and strong-line active galactic nuclei (AGN) activity. The strong-line sources are estimated to have star formation rates at least a factor of 3-4 higher than those in the weak-line objects. Our conclusion is consistent with earlier work, generally carried out using much smaller samples, and reinforces the general picture of high-excitation radio galaxies as being located in lower-mass, less evolved host galaxies than their low-excitation counterparts. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

Constraining the bright-end of the UV luminosity function for z ≈ 7-9 galaxies: Results from CANDELS/GOODS-South

Monthly Notices of the Royal Astronomical Society 429:1 (2013) 150-158

Authors:

S Lorenzoni, AJ Bunker, SM Wilkins, J Caruana, ER Stanway, MJ Jarvis

Abstract:

The recent Hubble Space Telescope near-infrared imaging with the Wide-Field Camera #3 (WFC 3) of the Great Observatories Origins Deep Survey South (GOODS-S) field in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) programme covering nearly 100 arcmin2, along with already existing Advanced Camera for Surveys optical data, makes possible the search for bright galaxy candidates at redshift z≈7-9 using the Lyman break technique. We present the first analysis of z'-drop z≈7 candidate galaxies in this area, finding 19 objects. We also analyse Y-drops at z≈8, trebling the number of bright (HAB < 27 mag) Y-drops from our previous work, and compare our results with those of other groups based on the same data. The bright high-redshift galaxy candidates we find serve to better constrain the bright end of the luminosity function at those redshift, and may also be more amenable to spectroscopic confirmation than the fainter ones presented in various previous work on the smaller fields (the Hubble Ultra Deep Field and the WFC 3 Early Release Science observations).We also look at the agreement with previous luminosity functions derived from WFC3 drop-out counts, finding a generally good agreement, except for the luminosity function of Yan et al. at z≈8, which is strongly ruled out. ©2012 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Current page 55
  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet