Stable end-sealed DNA as robust nano-rulers for in vivo single-molecule fluorescence
Chem. Sci. Royal Society of Chemistry 7:7 (2016) 4418-4422
Abstract:
Single-molecule fluorescence and Förster resonance energy transfer (smFRET) are important tools for studying molecular heterogeneity, cellular organization, and protein structure in living cells. However, in vivo smFRET studies are still very challenging, and a standardized approach for robust in vivo smFRET measurements is still missing. Here, we synthesized protected DNAs with chemically linked ends as robust in vivo nano-rulers. We efficiently internalized doubly-labeled end-sealed DNA standards into live bacteria using electroporation and obtained stable and long-lasting smFRET signatures. Single-molecule fluorescence signals could be extended to ∼1 min by studying multi-fluorophore DNA standards. The high stability of protected DNA standards offers a general approach to evaluate single-molecule fluorescence and FRET signals, autofluorescence background, and fluorophore density, and hence, quality check the workflow for studying single-molecule trajectories and conformational dynamics of biomolecules in vivo.The role of the priming loop in influenza A virus RNA synthesis
Nature Microbiology Nature (2016)
Abstract:
RNA-dependent RNA polymerases (RdRps) are used by RNA viruses to replicate and transcribe their RNA genomes1 . They adopt a closed, right-handed fold with conserved subdomains called palm, fingers and thumb1,2. Conserved RdRp motifs A–F coordinate the viral RNA template, NTPs and magnesium ions to facilitate nucleotide condensation1 . For the initiation of RNA synthesis, most RdRps use either a primer-dependent or de novo mechanism3. The influenza A virus RdRp, in contrast, uses a capped RNA oligonucleotide to initiate transcription, and a combination of terminal and internal de novo initiation for replication4. To understand how the influenza A virus RdRp coordinates these processes, we analysed the function of a thumb subdomain β-hairpin using initiation, elongation and single-molecule Förster resonance energy transfer (sm-FRET) assays. Our data indicate that this β-hairpin is essential for terminal initiation during replication, but not necessary for internal initiation and transcription. Analysis of individual residues in the tip of the β-hairpin shows that PB1 proline 651 is critical for efficient RNA synthesis in vitro and in cell culture. Overall, this work advances our understanding of influenza A virus RNA synthesis and identifies the initiation platform of viral replication.The role of the priming loop in influenza A virus RNA synthesis.
Nature microbiology 1 (2016) 16029
Abstract:
RNA-dependent RNA polymerases (RdRps) are used by RNA viruses to replicate and transcribe their RNA genomes(1). They adopt a closed, right-handed fold with conserved subdomains called palm, fingers and thumb(1,2). Conserved RdRp motifs A-F coordinate the viral RNA template, NTPs and magnesium ions to facilitate nucleotide condensation(1). For the initiation of RNA synthesis, most RdRps use either a primer-dependent or de novo mechanism(3). The influenza A virus RdRp, in contrast, uses a capped RNA oligonucleotide to initiate transcription, and a combination of terminal and internal de novo initiation for replication(4). To understand how the influenza A virus RdRp coordinates these processes, we analysed the function of a thumb subdomain β-hairpin using initiation, elongation and single-molecule Förster resonance energy transfer (sm-FRET) assays. Our data indicate that this β-hairpin is essential for terminal initiation during replication, but not necessary for internal initiation and transcription. Analysis of individual residues in the tip of the β-hairpin shows that PB1 proline 651 is critical for efficient RNA synthesis in vitro and in cell culture. Overall, this work advances our understanding of influenza A virus RNA synthesis and identifies the initiation platform of viral replication.E. Coli RNA Polymerase Pauses during Initial Transcription
Biophysical Journal Elsevier 110:3 (2016) 21a
How Structure-Specific DNA-Binding Proteins Recognise their Substrates
Biophysical Journal Elsevier 110:3 (2016) 514a-515a