Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Professor Achillefs Kapanidis

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Gene machines
Achillefs.Kapanidis@physics.ox.ac.uk
Telephone: 01865 (2)72226
Biochemistry Building
groups.physics.ox.ac.uk/genemachines/group
  • About
  • Publications

Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3).

Molecular cell (2018)

Authors:

W Lin, K Das, D Degen, A Mazumder, D Duchi, D Wang, YW Ebright, RY Ebright, E Sineva, M Gigliotti, A Srivastava, S Mandal, Y Jiang, Y Liu, R Yin, Z Zhang, ET Eng, D Thomas, S Donadio, H Zhang, C Zhang, AN Kapanidis, RH Ebright

Abstract:

Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.
More details from the publisher
Details from ORA
More details
More details

Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase

(2018)

Authors:

TD Craggs, M Sustarsic, A Plochowietz, M Mosayebi, H Kaju, A Cuthbert, J Hohlbein, L Domicevica, PHILIP Biggin, J Doye, A Kapanidis

Abstract:

DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets. Some proteins recognise specific nucleotide sequences, while many DNA repair proteins interact with specific (often bent) DNA structures. While sequence-specific DNA binding mechanisms have been studied extensively, structure-specific mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I (Pol) substrates both alone and in Pol-DNA complexes. Using a rigid-body docking approach based on a network of 73 distance restraints collected using single-molecule FRET, we determined a novel solution structure of the singlenucleotide-gapped DNA-Pol binary complex. The structure was highly consistent with previous crystal structures with regards to the downstream primer-template DNA substrate; further, our structure showed a previously unobserved sharp bend (~120°) in the DNA substrate; we also showed that this pronounced bending of the substrate is present in living bacteria. All-atom molecular dynamics simulations and single-molecule quenching assays revealed that 4-5 nt of downstream gap-proximal DNA are unwound in the binary complex. Coarse-grained simulations on free gapped substrates reproduced our experimental FRET values with remarkable accuracy (<ΔFRET> = -0.0025 across 34 independent distances) and revealed that the one-nucleotide-gapped DNA frequently adopted highly bent conformations similar to those in the Pol-bound state (ΔG < 4 kT); such conformations were much less accessible to nicked (> 7 kT) or duplex (>> 10 kT) DNA. Our results suggest a mechanism by which Pol and other structure-specific DNA-binding proteins locate their DNA targets through sensing of the conformational dynamics of DNA substrates.
More details from the publisher

Single-molecule analysis of the influenza virus replication initiation mechanism

Biophysical Journal Biophysical Society 114:3 (2018) 246A-246A

Authors:

Nicole Robb, AJW te Velthuis, Ervin Fodor, Achillefs Kapanidis
More details from the publisher
Details from ORA
More details
More details

Short-Read Single-Molecule DNA Sequencing for Highly Parallel Analysis of Protein-DNA Interactions

Biophysical Journal Elsevier 114:3 (2018) 92a

Authors:

Rebecca Andrews, Horst Steuer, Arun Shivalingam, Afaf H El-Sagheer, Tom Brown, Achillefs N Kapanidis
More details from the publisher

Wide-Field Monitoring of Single Fluorescent Molecules and Nanoparticles without Immobilization

Biophysical Journal Elsevier 114:3 (2018) 169a

Authors:

Barak Gilboa, Bo Jing, Maabur Sow, Tao Ju Cui, Anne Plochowietz, Achillefs N Kapanidis
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet