Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Bence Kocsis

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
bence.kocsis@physics.ox.ac.uk
Telephone: 01865 273959
Rudolf Peierls Centre for Theoretical Physics, room 50.08
  • About
  • Publications

Secular spin–orbit resonances of black hole binaries in AGN disks

Astrophysical Journal American Astronomical Society 950:1 (2023) 48

Authors:

Gongjie Li, Hareesh Gautham Bhaskar, Bence Kocsis, Douglas NC Lin

Abstract:

The spin–orbit misalignment of stellar-mass black hole (sBH) binaries provides important constraints on the formation channels of merging sBHs. Here, we study the role of secular spin–orbit resonance in the evolution of an sBH binary component around a supermassive BH (SMBH) in an AGN disk. We consider the sBH's spin precession due to the J2 moment introduced by a circum-sBH disk within the warping/breaking radius of the disk. We find that the sBH's spin–orbit misalignment (obliquity) can be excited via spin–orbit resonance between the sBH binary's orbital nodal precession and the sBH spin precession driven by a massive circum-sBH disk. Using an α-disk model with Bondi–Hoyle–Lyttleton accretion, the resonances typically occur for sBH binaries with semimajor axis of 1 au and at a distance of ∼1000 au around a 107 M⊙ SMBH. The spin–orbit resonances can lead to high sBH obliquities and a broad distribution of sBH binary spin–spin misalignments. However, we note that the Bondi–Hoyle–Lyttleton accretion is much higher than that of Eddington accretion, which typically results in spin precession being too low to trigger spin–orbit resonances. Thus, secular spin–orbit resonances can be quite rare for sBHs in AGN disks.
More details from the publisher
Details from ORA
More details

Quiescent and Active Galactic Nuclei as Factories of Merging Compact Objects in the Era of Gravitational Wave Astronomy

UNIVERSE MDPI AG 9:3 (2023) ARTN 138

Authors:

Manuel Arca Sedda, Smadar Naoz, Bence Kocsis

Abstract:

Galactic nuclei harbouring a central supermassive black hole (SMBH), possibly surrounded by a dense nuclear cluster (NC), represent extreme environments that house a complex interplay of many physical processes that uniquely affect stellar formation, evolution, and dynamics. The discovery of gravitational waves (GWs) emitted by merging black holes (BHs) and neutron stars (NSs), funnelled a huge amount of work focused on understanding how compact object binaries (COBs) can pair up and merge together. Here, we review from a theoretical standpoint how different mechanisms concur with the formation, evolution, and merger of COBs around quiescent SMBHs and active galactic nuclei (AGNs), summarising the main predictions for current and future (GW) detections and outlining the possible features that can clearly mark a galactic nuclei origin.
More details from the publisher
Details from ORA
More details

Quiescent and active galactic nuclei as factories of merging compact objects in the era of gravitational-wave astronomy

(2023)

Authors:

Manuel Arca Sedda, Smadar Naoz, Bence Kocsis
More details from the publisher

Anisotropic mass segregation: two-component mean-field model

(2023)

Authors:

Hanxi Wang, Bence Kocsis
More details from the publisher

Black hole discs and spheres in galactic nuclei – exploring the landscape of vector resonant relaxation equilibria

Monthly Notices of the Royal Astronomical Society Oxford University Press 520:2 (2023) 2204-2216

Authors:

Gergely Máthé, Ákos Szölgyén, Bence Kocsis

Abstract:

Vector resonant relaxation (VRR) is known to be the fastest gravitational process that shapes the geometry of stellar orbits in nuclear star clusters. This leads to the realignment of the orbital planes on the corresponding VRR time-scale tVRR of a few million years, while the eccentricity e and semimajor axis a of the individual orbits are approximately conserved. The distribution of orbital inclinations reaches an internal equilibrium characterized by two conserved quantities, the total potential energy among stellar orbits, Etot, and the total angular momentum, Ltot. On time-scales longer than tVRR, the eccentricities and semimajor axes change slowly, and the distribution of orbital inclinations are expected to evolve through a series of VRR equilibria. Using a Monte Carlo Markov Chain method, we determine the equilibrium distribution of orbital inclinations in the microcanonical ensemble with fixed Etot and Ltot for isolated nuclear star clusters with a power-law distribution of a, e, and m, where m is the stellar mass. We explore the possible equilibria for nine representative Etot–Ltot pairs that cover the possible parameter space. For all cases, the equilibria show anisotropic mass segregation, where the distribution of more massive objects is more flattened than that for lighter objects. Given that stellar black holes are more massive than the average main-sequence stars, these findings suggest that black holes reside in disc-like structures within nuclear star clusters for a wide range of initial conditions.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet