Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Bence Kocsis

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
bence.kocsis@physics.ox.ac.uk
Telephone: 01865 273959
Rudolf Peierls Centre for Theoretical Physics, room 50.08
  • About
  • Publications

On the Jacobi capture origin of binaries with applications to the Earth-Moon system and black holes in galactic nuclei

(2022)

Authors:

Tjarda CN Boekholt, Connar Rowan, Bence Kocsis
More details from the publisher
Details from ArXiV

AGN as potential factories for eccentric black hole mergers

Nature Springer Nature 603:7900 (2022) 237-240

Authors:

J Samsing, I Bartos, Dj D'Orazio, Z Haiman, B Kocsis, Nwc Leigh, B Liu, Me Pessah, H Tagawa

Abstract:

There is some weak evidence that the black hole merger named GW190521 had a non-zero eccentricity1,2. In addition, the masses of the component black holes exceeded the limit predicted by stellar evolution3. The large masses can be explained by successive mergers4,5, which may be efficient in gas disks surrounding active galactic nuclei, but it is difficult to maintain an eccentric orbit all the way to the merger, as basic physics would argue for circularization6. Here we show that active galactic nuclei disk environments can lead to an excess of eccentric mergers, if the interactions between single and binary black holes are frequent5 and occur with mutual inclinations of less than a few degrees. We further illustrate that this eccentric population has a different distribution of the inclination between the spin vectors of the black holes and their orbital angular momentum at merger7, referred to as the spin–orbit tilt, compared with the remaining circular mergers.

More details from the publisher
Details from ORA
More details
More details

Secular Spin-orbit Resonances of Black Hole Binaries in AGN Disks

(2022)

Authors:

Gongjie Li, Hareesh Gautham Bhaskar, Bence Kocsis, Douglas NC Lin
More details from the publisher
Details from ArXiV

Black Hole Discs and Spheres in Galactic Nuclei -- Exploring the Landscape of Vector Resonant Relaxation Equilibria

(2022)

Authors:

Gergely Máthé, Ákos Szölgyén, Bence Kocsis
More details from the publisher
Details from ArXiV

Dynamical Formation of MergingStellar-Mass Binary Black Holes

Chapter in Handbook of Gravitational Wave Astronomy, Springer Nature (2022) 661-704
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet