Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Bence Kocsis

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
bence.kocsis@physics.ox.ac.uk
Telephone: 01865 273959
Rudolf Peierls Centre for Theoretical Physics, room 50.08
  • About
  • Publications

Black hole mergers from quadruples

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2019)

Authors:

Giacomo Fragione, Bence Kocsis

Abstract:

With the hundreds of merging binary black hole (BH) signals expected to be detected by LIGO/Virgo, LISA and other instruments in the next few years, the modeling of astrophysical channels that lead to the formation of compact-object binaries has become of fundamental importance. In this paper, we carry out a systematic statistical study of quadruple BHs consisting of two binaries in orbit around their center of mass, by means of high-precision direct $N$-body simulations including Post-Newtonian (PN) terms up to 2.5PN order. We found that most merging systems have high initial inclinations and the distributions peak at $\sim 90^\circ$ as for triples, but with a more prominent broad distribution tail. We show that BHs merging through this channel have a significant eccentricity in the LIGO band, typically much larger than BHs merging in isolated binaries and in binaries ejected from star clusters, but comparable to that of merging binaries formed via the GW capture scenario in clusters, mergers in hierarchical triples, or BH binaries orbiting intermediate-mass black holes in star clusters. We show that the merger fraction can be up to $\sim 3$--$4\times$ higher for quadruples than for triples. Thus even if the number of quadruples is $20\%$--$25\%$ of the number of triples, the quadruple scenario can represent an important contribution to the events observed by LIGO/VIRGO.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Detecting Supermassive Black Hole-induced Binary Eccentricity Oscillations with LISA

ASTROPHYSICAL JOURNAL LETTERS American Astronomical Society 875:2 (2019) ARTN L31

Authors:

Bao-Minh Hoang, Smadar Naoz, Bence Kocsis, Will M Farr, Jessica McIver

Abstract:

Stellar-mass black hole binaries (BHBs) near supermassive black holes (SMBH) in galactic nuclei undergo eccentricity oscillations due to gravitational perturbations from the SMBH. Previous works have shown that this channel can contribute to the overall BHB merger rate detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo Interferometer. Significantly, the SMBH gravitational perturbations on the binary's orbit may produce eccentric BHBs which are expected to be visible using the upcoming Laser Interferometer Space Antenna (LISA) for a large fraction of their lifetime before they merge in the LIGO/Virgo band. For a proof-of-concept, we show that the eccentricity oscillations of these binaries can be detected with LISA for BHBs in the local universe up to a few Mpcs, with observation periods shorter than the mission lifetime, thereby disentangling this merger channel from others. The approach presented here is straightforward to apply to a wide variety of compact object binaries with a tertiary companion.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Anisotropic Mass Segregation in Rotating Globular Clusters

(2019)

Authors:

Ákos Szölgyén, Yohai Meiron, Bence Kocsis
More details from the publisher

Black hole mergers from quadruples

(2019)

Authors:

Giacomo Fragione, Bence Kocsis
More details from the publisher

AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers

(2019)

Authors:

Y Yang, I Bartos, Z Haiman, B Kocsis, Z Marka, NC Stone, S Marka
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet