Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Bence Kocsis

Associate Professor of Theoretical Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Galaxy formation and evolution
  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
bence.kocsis@physics.ox.ac.uk
Telephone: 01865 273959
Rudolf Peierls Centre for Theoretical Physics, room 50.08
  • About
  • Publications

Making a Supermassive Star by Stellar Bombardment

ASTROPHYSICAL JOURNAL American Astronomical Society 892:1 (2020) ARTN 36

Authors:

Hiromichi Tagawa, Zoltan Haiman, Bence Kocsis

Abstract:

Approximately two hundred supermassive black holes (SMBHs) have been discovered within the first $\sim$Gyr after the Big Bang. One pathway for the formation of SMBHs is through the collapse of supermassive stars (SMSs). A possible obstacle to this scenario is that the collapsing gas fragments and forms a cluster of main-sequence stars. Here we raise the possibility that stellar collisions may be sufficiently frequent and energetic to inhibit the contraction of the massive protostar, avoiding strong UV radiation driven outflows, and allowing it to continue growing into an SMS. We investigate this scenario with semianalytic models incorporating star formation, gas accretion, dynamical friction from stars and gas, stellar collisions, and gas ejection. We find that when the collapsing gas fragments at a density of $\lesssim 3\times 10^{10}\,\mathrm{cm^{-3}}$, the central protostar contracts due to infrequent stellar mergers, and in turn photoevaporates the remaining collapsing gas, resulting in the formation of a $\lesssim 10^4~{\rm M_\odot}$ object. On the other hand, when the collapsing gas fragments at higher densities (expected for a metal-poor cloud with $Z\lesssim10^{-5}\,{\rm Z_\odot}$ with suppressed ${\rm H_2}$ abundance) the central protostar avoids contraction and keeps growing via frequent stellar mergers, reaching masses as high as $\sim 10^5-10^6\,{\rm M_\odot}$. We conclude that frequent stellar mergers represent a possible pathway to form massive BHs in the early universe.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Cosmic Evolution of Stellar-mass Black Hole Merger Rate in Active Galactic Nuclei

(2020)

Authors:

Y Yang, I Bartos, Z Haiman, B Kocsis, S Márka, H Tagawa
More details from the publisher

GW170817A as a Hierarchical Black Hole Merger

ASTROPHYSICAL JOURNAL LETTERS American Astronomical Society 890:2 (2020) ARTN L20

Authors:

V Gayathri, I Bartos, Z Haiman, S Klimenko, B Kocsis, S Marka, Y Yang

Abstract:

Despite the rapidly growing number of stellar-mass binary black hole mergers discovered through gravitational waves, the origin of these binaries is still not known. In galactic centers, black holes can be brought to each others' proximity by dynamical processes, resulting in mergers. It is also possible that black holes formed in previous mergers encounter new black holes, resulting in so-called hierarchical mergers. Hierarchical events carry signatures such as higher-than usual black hole mass and spin. Here we show that the recently reported gravitational-wave candidate, GW170817A, could be the result of such a hierarchical merger. In particular, its chirp mass $\sim40$ M$_\odot$ and effective spin of $\chi_{\rm eff}\sim0.5$ are the typically expected values from hierarchical mergers within the disks of active galactic nuclei. We find that the reconstructed parameters of GW170817A strongly favor a hierarchical merger origin over having been produced by an isolated binary origin (with an Odds ratio of $>10^3$, after accounting for differences between the expected rates of hierarchical versus isolated mergers)
More details from the publisher
Details from ORA
More details
Details from ArXiV

Formation and Evolution of Compact Object Binaries in AGN Disks

(2019)

Authors:

Hiromichi Tagawa, Zoltan Haiman, Bence Kocsis
More details from the publisher

Anisotropic Mass Segregation in Rotating Globular Clusters

ASTROPHYSICAL JOURNAL American Astronomical Society 887:2 (2019) ARTN 123

Authors:

Akos Szolgyen, Yohai Meiron, Bence Kocsis

Abstract:

We investigate the internal dynamics of anisotropic, rotating globular clusters with a multimass stellar population by performing new direct N-body simulations. In addition to the well-known radial mass segregation effect, where heavy stars and stellar remnants sink toward the center of the cluster, we find a mass segregation in the distribution of orbital inclinations as well. This newly discovered anisotropic mass segregation leads to the formation of a disk-like structure of massive objects near the equatorial plane of a rotating cluster. This result has important implications on the expected spatial distribution of black holes in globular clusters.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet