Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Hans Kraus

Professor of Physics

Research theme

  • Particle astrophysics & cosmology

Sub department

  • Particle Physics

Research groups

  • LUX-ZEPLIN
Hans.Kraus@physics.ox.ac.uk
Telephone: 01865 (2)73361
Denys Wilkinson Building, room 623
  • About
  • Publications

The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films

Advanced Materials Wiley 30:44 (2018) 1804506

Authors:

Rebecca L Milot, Matthew T Klug, Christopher Davies, Zhiping Wang, Hans AP Kraus, Henry J Snaith, Michael B Johnston, Laura M Herz

Abstract:

Intrinsic and extrinsic optoelectronic properties are unraveled for formamidinium tin triiodide (FASnI3) thin films, whose background hole doping density was varied through SnF2 addition during film fabrication. Monomolecular charge-carrier recombination exhibits both a dopant-mediated part that grows linearly with hole doping density and remnant contributions that remain under tin-enriched processing conditions. At hole densities near 1020 cm-3, a strong Burstein-Moss effect increases absorption onset energies by ~300meV beyond the band gap energy of undoped FASnI3 (shown to be 1.2 eV at 5 K and 1.35 eV at room temperature). At very high doping densities (1020 cm-3), temperature-dependent measurements indicate that the effective charge-carrier mobility is suppressed through scattering with ionized dopants. Once the background hole concentration is nearer 1019 cm-3 and below, the charge-carrier mobility increases with decreasing temperature according to ~T-1.2, suggesting it is limited mostly by intrinsic interactions with lattice vibrations. For the lowest doping concentration of 7.2´1018 cm^-3, charge-carrier mobilities reach a value of 67 cm2V-1s-1at room temperature and 470 cm2V-1s-1 at 50 K. Intra-excitonic transitions observed in the THz-frequency photoconductivity spectra at 5K reveal an exciton binding energy of only 3.1 meV for FASnI3, in agreement with the low bandgap energy exhibited by this perovskite.
More details from the publisher
Details from ORA
More details
More details

Limits on Dark Matter Effective Field Theory Parameters with CRESST-II

(2018)

Authors:

G Angloher, P Bauer, A Bento, E Bertoldo, C Bucci, L Canonica, A D'Addabbo, X Defay, S Di Lorenzo, A Erb, FV Feilitzsch, N Ferreiro Iachellini, P Gorla, D Hauff, J Jochum, M Kiefer, H Kluck, H Kraus, A Langenkämper, M Mancuso, V Mokina, E Mondragon, V Morgalyuk, A Münster, M Olmi, C Pagliarone, F Petricca, W Potzel, F Pröbst, F Reindl, J Rothe, K Schäffner, J Schieck, V Schipperges, S Schönert, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, C Türkoglu, I Usherov, M Willers, M Wüstrich, V Zema, R Catena
More details from the publisher

Impact of the organic cation on the optoelectronic properties of formamidinium lead triiodide

Journal of Physical Chemistry Letters American Chemical Society 9:16 (2018) 4502-4511

Authors:

Christopher L Davies, Juliane Borchert, Chelsea Q Xia, Rebecca L Milot, Hans Kraus, Michael B Johnston, Laura Herz

Abstract:

Metal halide perovskites have proven to be excellent light-harvesting materials in photovoltaic devices whose efficiencies are rapidly improving. Here, we examine the temperature-dependent photon absorption, exciton binding energy, and band gap of FAPbI3 (thin film) and find remarkably different behavior across the β–γ phase transition compared with MAPbI3. While MAPbI3 has shown abrupt changes in the band gap and exciton binding energy, values for FAPbI3 vary smoothly over a range of 100–160 K in accordance with a more gradual transition. In addition, we find that the charge-carrier mobility in FAPbI3 exhibits a clear T–0.5 trend with temperature, in excellent agreement with theoretical predictions that assume electron–phonon interactions to be governed by the Fröhlich mechanism but in contrast to the T–1.5 dependence previously observed for MAPbI3. Finally, we directly observe intraexcitonic transitions in FAPbI3 at low temperature, from which we determine a low exciton binding energy of only 5.3 meV at 10 K.
More details from the publisher
Details from ORA
More details
More details

A Low Nuclear Recoil Energy Threshold for Dark Matter Search with CRESST-III Detectors

Journal of Low Temperature Physics (2018) 1-8

Authors:

M Mancuso, G Angloher, P Bauer, A Bento, C Bucci, L Canonica, A D Addabbo, X Defay, A Erb, F von Feilitzsch, N Ferreiro Iachellini, P Gorla, A Gütlein, D Hauff, J Jochum, M Kiefer, H Kluck, H Kraus, JC Lanfranchi, A Langenkämper, J Loebell, E Mondragon, A Münster, C Pagliarone, F Petricca, W Potzel, F Pröbst, R Puig, F Reindl, J Rothe, K Schäffner, J Schieck, V Schipperges, S Schönert, W Seidel, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, A Tanzke, HHT Thi, C Türkoglu, M Uffinger, A Ulrich, I Usherov, S Wawoczny, M Willers, M Wüstrich

Abstract:

© 2018 The Author(s) The CRESST-III experiment (Cryogenic Rare Events Search with Superconducting Thermometers), located at the underground facility Laboratori Nazionali del Gran Sasso in Italy, uses scintillating CaWO(Formula presented.) crystals as cryogenic calorimeters to search for direct dark matter interactions in detectors. A large part of the parameter space for spin-independent scattering off nuclei remains untested for dark matter particles with masses below a few GeV/c(Formula presented.), despite many naturally motivated theoretical models for light dark matter particles. The CRESST-III detectors are designed to achieve the performance required to probe the low-mass region of the parameter space with a sensitivity never reached before. In this paper, new results on the performance and an overview of the CRESST-III detectors will be presented, emphasizing the results about the low-energy threshold for nuclear recoil of CRESST-III Phase 1 which started collecting data in August 2016.
More details from the publisher
More details

TES-Based Light Detectors for the CRESST Direct Dark Matter Search

Journal of Low Temperature Physics (2018) 1-7

Authors:

J Rothe, G Angloher, P Bauer, A Bento, C Bucci, L Canonica, A D Addabbo, X Defay, A Erb, FV Feilitzsch, N Ferreiro Iachellini, P Gorla, A Gütlein, D Hauff, J Jochum, M Kiefer, H Kluck, H Kraus, JC Lanfranchi, A Langenkämper, J Loebell, M Mancuso, E Mondragon, A Münster, C Pagliarone, F Petricca, W Potzel, F Pröbst, R Puig, F Reindl, K Schäffner, J Schieck, V Schipperges, S Schönert, W Seidel, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, A Tanzke, HH Trinh Thi, C Türkoğlu, A Ulrich, I Usherov, S Wawoczny, M Willers, M Wüstrich

Abstract:

© 2018 The Author(s) The CRESST experiment uses cryogenic detectors based on transition-edge sensors to search for dark matter interactions. Each detector module consists of a scintillating CaWO(Formula presented.) crystal and a silicon-on-sapphire (SOS) light detector which operate in coincidence (phonon-light technique). The 40-mm-diameter SOS disks (2 g mass) used in the data taking campaign of CRESST-II Phase 2 (2014–2016) reached absolute baseline resolutions of (Formula presented.) 4–7 eV. This is the best performance reported for cryogenic light detectors of this size. Newly developed silicon beaker light detectors (4 cm height, 4 cm diameter, 6 g mass), which cover a large fraction of the target crystal surface, have achieved a baseline resolution of (Formula presented.)eV. First results of further improved light detectors developed for the ongoing low-threshold CRESST-III experiment are presented.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet