Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Ard Louis

Professor of Theoretical Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
ard.louis@physics.ox.ac.uk
Louis Research Group members
Louis Research Group
  • About
  • Research
  • Publications on arXiv/bioRxiv
  • Publications

The Asakura-Oosawa model in the protein limit: the role of many-body interactions

(2003)

Authors:

A Moncho-Jorda, AA Louis, PG Bolhuis, R Roth
More details from the publisher

Effect of polymer-polymer interactions on the surface tension of colloid-polymer mixtures

(2003)

Authors:

A Moncho-Jorda, B Rotenberg, AA Louis
More details from the publisher

Thermodynamic perturbation theory of the phase behaviour of colloid / interacting polymer mixtures

(2003)

Authors:

B Rotenberg, J Dzubiella, J-P Hansen, AA Louis
More details from the publisher

Nonmonotonic variation with salt concentration of the second virial coefficient in protein solutions

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 67:5 1 (2003)

Authors:

E Allahyarov, H Löwen, JP Hansen, AA Louis

Abstract:

The effective interactions and the second osmotic virial coefficient B2 of protein solutions incorporating the electrostatics within the "primitive" model of electrolytes was calculated. For discrete charge distributions, the interactions and related B2 vary in a nonmonotonic fashion with increasing ionic strength, while for the smeared charge model, a standard workhorse of colloidal physics, this effect was absent. These correlated-induced effects were missed within nonlinear PB theory, and similar coarse-graining techniques taken from the theory of colloids.

Influence of solvent quality on effective pair potentials between polymers in solution

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 67:4 1 (2003) 418011-4180114

Authors:

V Krakoviack, JP Hansen, AA Louis

Abstract:

The effect of solvent quality on the effective pair potentials of the interacting linear polymers of a solution was investigated. The inversion of c.m. pair distribution function, by using the hypernetted chain closure method, was employed for the derivation of effective pair potentials. The pair potential was found to be strongly dependent on the polymer concentration and temperature.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • Current page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet