Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution
(2021)
Abstract:
Contingency, convergence and hyper-astronomical numbers in biological evolution.
Studies in history and philosophy of biological and biomedical sciences 58 (2016) 107-116
Abstract:
Counterfactual questions such as "what would happen if you re-run the tape of life?" turn on the nature of the landscape of biological possibilities. Since the number of potential sequences that store genetic information grows exponentially with length, genetic possibility spaces can be so unimaginably vast that commentators frequently reach of hyper-astronomical metaphors that compare their size to that of the universe. Re-run the tape of life and the likelihood of encountering the same sequences in such hyper-astronomically large spaces is infinitesimally small, suggesting that evolutionary outcomes are highly contingent. On the other hand, the wide-spread occurrence of evolutionary convergence implies that similar phenotypes can be found again with relative ease. How can this be? Part of the solution to this conundrum must lie in the manner that genotypes map to phenotypes. By studying simple genotype-phenotype maps, where the counterfactual space of all possible phenotypes can be enumerated, it is shown that strong bias in the arrival of variation may explain why certain phenotypes are (repeatedly) observed in nature, while others never appear. This biased variation provides a non-selective cause for certain types of convergence. It illustrates how the role of randomness and contingency may differ significantly between genetic and phenotype spaces.Bounding phenotype transition probabilities via conditional complexity
Journal of The Royal Society Interface The Royal Society 22:231 (2025) 20240916
Abstract:
By linking genetic sequences to phenotypic traits, genotype-phenotype maps represent a key layer in biological organization. Their structure modulates the effects of genetic mutations which can contribute to shaping evolutionary outcomes. Recent work based on algorithmic information theory introduced an upper bound on the likelihood of a random genetic mutation causing a transition between two phenotypes, using only the conditional complexity between them. Here we evaluate how well this bound works for a range of genotype-phenotype maps, including a differential equation model for circadian rhythm, a matrix-multiplication model of gene regulatory networks, a developmental model of tooth morphologies for ringed seals, a polyomino-tile shape model of biological self-assembly, and the hydrophobic/polar (HP) lattice protein model. By assessing three levels of predictive performance, we find that the bound provides meaningful estimates of phenotype transition probabilities across these complex systems. These results suggest that transition probabilities can be predicted to some degree directly from the phenotypes themselves, without needing detailed knowledge of the underlying genotype-phenotype map.Feature learning is decoupled from generalization in high capacity neural networks
(2025)