Precision Unification in λSUSY with a 125 GeV Higgs
ArXiv 1207.1435 (2012)
Abstract:
It is challenging to explain the tentative 125 GeV Higgs signal in the Minimal Supersymmetric Standard Model (MSSM) without introducing excessive fine-tuning, and this motivates the study of non-minimal implementations of low energy supersymmetry (SUSY). A term \lambda SH_uH_d involving a Standard Model (SM) singlet state S leads to an additional source for the quartic interaction raising the mass of the lightest SM-like Higgs. However, in order to achieve m_h \approx 125 GeV with light stops and small stop mixing, it is necessary for \lambda \gtrsim 0.7 and consequently \lambda may become non-perturbative before the unification scale. Moreover, as argued by Barbieri, Hall, et al. low fine-tuning prefers the region \lambda~1-2, leading to new or non-perturbative physics involving S below the GUT scale (`\lambda SUSY' models). This raises the concern that precision gauge coupling unification, the prime piece of indirect experimental evidence for low energy SUSY, may be upset. Using the NSVZ exact \beta-function along with well motivated assumptions on the strong coupling dynamics we show that this is not necessarily the case, but rather there exist classes of UV completions where the strong-coupling effects can naturally correct for the present ~3% discrepancy in the two-loop MSSM unification prediction for \alpha_s. Moreover, we argue that in certain scenarios a period of strong coupling can also be beneficial for t-b unification, while maintaining the small to moderate values of tan\beta preferred by the Higgs mass.Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks
ArXiv 1203.4854 (2012)
Abstract:
It is argued that experimental constraints on theories of asymmetric dark matter (ADM) almost certainly require that the DM be part of a richer hidden sector of interacting states of comparable mass or lighter. A general requisite of models of ADM is that the vast majority of the symmetric component of the DM number density must be removed in order to explain the observed relationship $\Omega_B\sim\Omega_{DM}$ via the DM asymmetry. Demanding the efficient annihilation of the symmetric component leads to a tension with experimental limits if the annihilation is directly to Standard Model (SM) degrees of freedom. A comprehensive effective operator analysis of the model independent constraints on ADM from direct detection experiments and LHC monojet searches is presented. Notably, the limits obtained essentially exclude models of ADM with mass 1GeV$\lesssim m_{DM} \lesssim$ 100GeV annihilating to SM quarks via heavy mediator states. This motivates the study of portal interactions between the dark and SM sectors mediated by light states. Resonances and threshold effects involving the new light states are shown to be important for determining the exclusion limits.Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks
(2012)
A supersymmetric one Higgs doublet model
Journal of High Energy Physics 2011:4 (2011)