QSHS: an axion dark matter resonant search apparatus
Abstract:
We describe a resonant cavity search apparatus for axion dark matter constructed by the quantum sensors for the hidden sector collaboration. The apparatus is configured to search for QCD axion dark matter, though also has the capability to detect axion-like particles, dark photons, and some other forms of wave-like dark matter. Initially, a tuneable cylindrical oxygen-free copper cavity is read out using a low noise microwave amplifier feeding a heterodyne receiver. The cavity is housed in a dilution refrigerator (DF) and threaded by a solenoidal magnetic field, nominally 8 T. The apparatus also houses a magnetic field shield for housing superconducting electronics, and several other fixed-frequency resonators for use in testing and commissioning various prototype quantum electronic devices sensitive at a range of axion masses in the range 2.0– 40μeVc−2. The apparatus as currently configured is intended as a test stand for electronics over the relatively wide frequency band attainable with the TM010 cavity mode used for axion searches. We present performance data for the resonator, DF, and magnet, and plans for the first science run.Dark Matter EFT landscape probed by QUEST-DMC
Abstract:
We present the projected sensitivity to non-relativistic Effective Field Theory (EFT) operators for dark matter (DM) direct detection using the QUEST-DMC experiment. QUEST-DMC employs superfluid Helium-3 as a target medium and measures energy deposition via nanomechanical resonators with SQUID-based readout to probe DM interactions. The experiment aims to explore new parameter space in the sub-GeV mass range, probing light DM and a broad range of interaction models. We analyse the sensitivity to a complete set of fourteen independent non-relativistic EFT operators, each parameterised by a Wilson coefficient that quantifies the strength of DM interactions with Standard Model particles. For each interaction channel, we determine the corresponding sensitivity ceiling due to attenuation of the DM flux incident on the detector, caused by DM scattering in the Earth and atmosphere. As a key component of this analysis, we provide the mapping between the non-relativistic EFT operators and the relativistic bilinear DM-nucleon interactions, and assess the interaction sensitivity to sub-GeV DM in the QUEST-DMC detector. Our findings demonstrate that QUEST-DMC provides a unique probe of DM interactions, particularly in previously unexplored parameter space for momentum- and velocity-dependent interactions, thereby expanding the search for viable DM candidates beyond traditional weakly interacting massive particles.De Sitter space constraints on brane tensions and couplings
Abstract:
We argue for the existence of bounds on the tensions of p-branes in de Sitter space in terms of the Hubble rate and the strength of a class of Chern-Simons-like couplings. The world-volume couplings involve Abelian 1-form gauge fields in the bulk and possibly field strengths intrinsic to the brane. In many cases these couplings are the D-brane Chern-Simons terms present in string theory, while in other cases they are the interactions of axion domain walls with U(1) fields. Our arguments use the same logic and assumptions as the recent Festina Lente proposal (thus utilizing the properties of Nariai de Sitter black holes) and generalize it to extended objects, thereby providing a bottom-up set of constraints independent of any particular UV completion. We compare these bounds to the properties of (wrapped) D-branes in Type II string theory in the weak coupling limit, under the assumption that these properties are not modified significantly in de Sitter constructions. We find that all constraints are satisfied by D-branes, providing further evidence for the Festina Lente conjecture. For the particular case of 2-branes with Chern-Simons interactions we obtain a bound, which however can be evaded if the theory contains a light axion. Similarly, we find the bounds do not apply to axion domain walls due to the presence of the axion.Dark matter attenuation effects: sensitivity ceilings for spin-dependent and spin-independent interactions
Abstract:
Direct detection experiments aimed at uncovering the elusive nature of dark matter (DM) have made significant progress in probing ever lower cross-sections for DM-nucleon interactions. At the same time, an upper limit in the cross-section sensitivity region is present due to DM scattering in the Earth and atmosphere and as a result never reaching the detector. We investigate the impact of this effect for both spin-dependent and spin-independent interactions. In contrast to previous studies that assume a straight line path for DM scattering we employ a semi-analytic diffusion model that takes into account the impact of potentially large angle deviations prevalent for light DM masses. We find that for sufficiently low energy thresholds, this difference in modelling impacts the DM interaction cross-section sensitivity. This study evaluates the impact in the context of the QUEST-DMC experiment, which utilises surface-based detectors with superfluid Helium-3 bolometers to search for sub-GeV DM exploiting low energy threshold. At masses below 1 GeV/c^2 the deviation between the two frameworks becomes pronounced. The ceiling sensitivity limit for QUEST-DMC on spin-dependent DM-neutron cross-sections is ∼ 3 × 10^-24cm^2 using the diffusive framework and approximately doubles with the straight-line path DM scattering. Similarly, for spin-independent DM-nucleon cross-sections, the ceiling limit is ∼ 7.5 × 10^-27cm^2 under the diffusive framework and also increases about a factor of two with the straight-line path approximation, within the mass range of 0.025–5 GeV/c^2.