Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

David Marshall

Professor of Physical Oceanography

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Physical oceanography
David.Marshall@physics.ox.ac.uk
Telephone: 01865 (2)72099
Robert Hooke Building, room F47
my personal webpage (external)
  • About
  • Publications

On the dynamical influence of ocean eddy potential vorticity fluxes

Ocean Modelling Elsevier 92 (2015) 169-182

Authors:

JR Maddison, DP Marshall, J Shipton
More details from the publisher

The seasonal cycle of submesoscale flows

Ocean Modelling Elsevier 92 (2015) 69-84

Authors:

Liam Brannigan, David P Marshall, Alberto Naveira-Garabato, AJ George Nurser
More details from the publisher

The role of ocean gateways in the dynamics and sensitivity to wind stress of the early Antarctic Circumpolar Current

Paleoceanography and Paleoclimatology American Geophysical Union (AGU) 30:3 (2015) 284-302

Authors:

DR Munday, HL Johnson, DP Marshall
More details from the publisher

The Injection of Zonal Momentum by Buoyancy Forcing in a Southern Ocean Model

Journal of Physical Oceanography American Meteorological Society 45:1 (2015) 259-271

Authors:

Emma Howard, Andrew McC. Hogg, Stephanie Waterman, David P Marshall
More details from the publisher

A conceptual model of ocean heat uptake under climate change

Journal of Climate American Meteorological Society 27:22 (2014) 8444-8465

Authors:

David Marshall, Laure Zanna

Abstract:

© 2014 American Meteorological Society. Aconceptual model of ocean heat uptake is developed as a multilayer generalization of Gnanadesikan. The roles of Southern Ocean Ekman and eddy transports, North Atlantic Deep Water (NADW) formation, and diapycnal mixing in controlling ocean stratification and transient heat uptake are investigated under climate change scenarios, including imposed surface warming, increased Southern Ocean wind forcing, with or without eddy compensation, and weakened meridional overturning circulation (MOC) induced by reduced NADW formation. With realistic profiles of diapycnal mixing, ocean heat uptake is dominated by Southern Ocean Ekman transport and its long-term adjustment controlled by the Southern Ocean eddy transport. The time scale of adjustment setting the rate of ocean heat uptake increases with depth. For scenarios with increased Southern Ocean wind forcing or weakened MOC, deepened stratification results in enhanced ocean heat uptake. In each of these experiments, the role of diapycnal mixing in setting ocean stratification and heat uptake is secondary. Conversely, in experiments with enhanced diapycnal mixing as employed in ''upwelling diffusion'' slab models, the contributions of diapycnal mixing and Southern Ocean Ekman transport to the net heat uptake are comparable, but the stratification extends unrealistically to the sea floor. The simple model is applied to interpret the output of an Earth system model, the Second Generation Canadian Earth System Model (CanESM2), in which the atmospheric CO2 concentration is increased by 1%yr-1 until quadrupling, where it is found that Southern Ocean Ekman transport is essential to reproduce the magnitude and vertical profile of ocean heat uptake.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet