A regime diagram for ocean geostrophic turbulence
Quarterly Journal of the Royal Meteorological Society (2016)
Abstract:
© 2016 Royal Meteorological Society.A two-dimensional regime diagram for geostrophic turbulence in the ocean is constructed by plotting observation-based estimates of the non-dimensional eddy length-scale against a nonlinearity parameter equal to the ratio of the root-mean-square eddy velocity and baroclinic Rossby phase speed. Two estimates of the eddy length-scale are compared: the equivalent eddy radius inferred from the area enclosed by contours of sea-surface height, and the 'unsuppressed' mixing length, based on an estimate of the eddy diffusivity with mean flow effects removed. For weak nonlinearity, as found in the Tropics, the mixing length mostly corresponds to the stability threshold for baroclinic instability whereas the eddy radius corresponds to the Rhines scale; it is suggested that this mismatch is indicative of the inverse energy cascade that occurs at low latitudes in the ocean and the zonal elongation of eddies. At larger values of nonlinearity, as found at mid- and high latitudes, the eddy length-scales are much shorter than the stability threshold, within a factor of 2.5 of the Rossby deformation radius.Eddy cancellation of the Ekman cell in subtropical gyres
Journal of Physical Oceanography American Meteorological Society 46:10 (2016) 2995-3010
Abstract:
The presence of large-scale Ekman pumping associated with the climatological wind stress curl is the textbook explanation for low biological activity in the subtropical gyres. Using an idealized eddy-resolving model it is shown that Eulerian-mean Ekman pumping may be opposed by an eddy-driven circulation, analogous to the way in which the atmospheric Ferrel cell and the Southern Ocean Deacon cell are opposed by eddy-driven circulations. Lagrangian particle tracking, potential vorticity fluxes, and depth-density streamfunctions are used to show that, in the model, the rectified effect of eddies acts to largely cancel the Eulerian-mean Ekman downwelling. To distinguish this effect from eddy compensation, it is proposed that the suppression of Eulerian-mean downwelling by eddies be called ``eddy cancellation.''A theoretical model of long Rossby waves in the southern ocean and their interaction with bottom topography
Fluids MDPI 1:2 (2016) 17
Abstract:
An analytical model of long Rossby waves is developed for a continuously-stratified, planetary geostrophic ocean in the presence of arbitrary bottom topography under the assumption that the potential vorticity is a linear function of buoyancy. The remaining dynamics are controlled by equations for material conservation of buoyancy along the sea surface and the sea floor. The mean, steady-state surface circulation follows characteristics that are intermediate to f and 𝑓/𝐻 contours, where f is the Coriolis parameter and H is the ocean depth; for realistic stratification and weak bottom currents, these characteristics are mostly zonal with weak deflections over the major topographic features. Equations are derived for linear long Rossby waves about this mean state. These are qualitatively similar to the long Rossby wave equations for a two-layer ocean, linearised about a state of rest, except that the surface characteristics in the wave equation, which dominate the propagation, follow precisely the same path as the mean surface flow. In addition to this topographic steering, it is shown that a weighted integral of the Rossby propagation term vanishes over any area enclosed by an 𝑓/𝐻 contour, which has been shown in the two-layer model to lead to Rossby waves “jumping” across the 𝑓/𝐻 contour. Finally, a nonlinear Rossby wave equation is derived as a specialisation of the result previously obtained by Rick Salmon. This consists of intrinsic westward propagation at the classical long Rossby speed, modified to account for the finite ocean depth, and a Doppler shift by the depth-mean flow. The latter dominates within the Antarctic Circumpolar Current, consistent with observed eastward propagation of sea surface height anomalies.The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales
Climate Dynamics Springer Verlag (2016)
Abstract:
The Southern Ocean plays a pivotal role in climate change by exchanging heat and carbon, and provides the primary window for the global deep ocean to communicate with the atmosphere. There has been a widespread focus on explaining atmospheric CO2 changes in terms of changes in wind forcing in the Southern Ocean. Here, we develop a dynamically-motivated metric, the residual upwelling, that measures the primary effect of Southern Ocean dynamics on atmospheric CO2 on centennial to millennial timescales by determining the communication with the deep ocean. The metric encapsulates the combined, net effect of winds and air–sea buoyancy forcing on both the upper and lower overturning cells, which have been invoked as explaining atmospheric CO2 changes for the present day and glacial-interglacial changes. The skill of the metric is assessed by employing suites of idealized ocean model experiments, including parameterized and explicitly simulated eddies, with online biogeochemistry and integrated for 10,000 years to equilibrium. Increased residual upwelling drives elevated atmospheric CO2 at a rate of typically 1–1.5 parts per million/106 m3 s−1 by enhancing the communication between the atmosphere and deep ocean. This metric can be used to interpret the long-term effect of Southern Ocean dynamics on the natural carbon cycle and atmospheric CO2, alongside other metrics, such as involving the proportion of preformed nutrients and the extent of sea ice cover.Dynamical attribution of recent variability in Atlantic overturning
Journal of Climate American Meteorological Society 29:9 (2016) 3339-3352