Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Andrew Mummery

Leverhulme-Peierls Fellow

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
andrew.mummery@physics.ox.ac.uk
Telephone: 01865 210826
Rudolf Peierls Centre for Theoretical Physics, room 50.05
  • About
  • Publications

Hard X-ray emission from a Compton scattering corona in large black hole mass tidal disruption events

Monthly Notices of the Royal Astronomical Society Oxford University Press 504:4 (2021) 4730-4742

Authors:

Andrew Mummery, Steven A Balbus

Abstract:

We extend the relativistic time-dependent thin-disc TDE model to describe non-thermal (2-10 keV) X-ray emission produced by the Compton up-scattering of thermal disc photons by a compact electron corona, developing analytical and numerical models of the evolving non-thermal X-ray light curves. In the simplest cases, these X-ray light curves follow power-law profiles in time. We suggest that TDE discs act in many respects as scaled-up versions of XRB discs, and that such discs should undergo state transitions into harder accretion states. XRB state transitions typically occur when the disc luminosity becomes roughly one per cent of its Eddington value. We show that if the same is true for TDE discs then this, in turn, implies that TDEs with non-thermal X-ray spectra should come preferentially from large-mass black holes. The characteristic hard-state transition mass is MHS ≃ 2 × 107M⊙. Hence, subpopulations of thermal and non-thermal X-ray TDEs should come from systematically different black hole masses. We demonstrate that the known populations of thermal and non-thermal X-ray TDEs do indeed come from different distributions of black hole masses. The null-hypothesis of identical black hole mass distributions is rejected by a two-sample Anderson-Darling test with a p-value <0.01. Finally, we present a model for the X-ray rebrightening of TDEs at late times as they transition into the hard state. These models of evolving TDE light curves are the first to join both thermal and non-thermal X-ray components in a unified scenario.
More details from the publisher
Details from ORA
More details
Details from ArXiV

ASASSN-15lh: a TDE about a maximally rotating 109 M⊙ black hole

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 497:1 (2020) L13-L18

Authors:

Andrew Mummery, Steven A Balbus

Abstract:

We model the light curves of the novel and extremely luminous transient ASASSN-15lh at nine different frequencies, from infrared to ultraviolet photon energies, as an evolving relativistic disc produced in the aftermath of a tidal disruption event (TDE). Good fits to all nine light curves are simultaneously obtained when Macc ≃ 0.07 M⊙ is accreted on to a black hole of mass M ≃ 109 M⊙ and near-maximal rotation a/rg = 0.99. The best-fitting black hole mass is consistent with a number of existing estimates from galactic scaling relationships. If confirmed, our results represent the detection of one of the most massive rapidly spinning black holes to date, and are strong evidence for a TDE origin for ASASSN-15lh. This would be the first TDE to be observed in the disc-dominated state at optical and infrared frequencies.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The spectral evolution of disc dominated tidal disruption events

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:4 (2020) 5655-5674

Authors:

Andrew Mummery, Steven A Balbus

Abstract:

We perform a detailed numerical and analytical study of the properties of observed light curves from relativistic thin discs, focussing on observational bands most appropriate for comparison with tidal disruption events (TDEs). We make use of asymptotic expansion techniques applied to the spectral emission integral, using time-dependent disc temperature profiles appropriate for solutions of the relativistic thin disc equation. Rather than a power law associated with bolometric disc emission L ∼ t−n, the observed X-ray flux from disc-dominated TDEs will typically have the form of a power law multiplied by an exponential (see equation 91). While precise details are somewhat dependent on the nature of the ISCO stress and disc-observer orientational angle, the general form of the time-dependent flux is robust and insensitive to the exact disc temperature profile. We present numerical fits to the UV and X-ray light curves of ASASSN-14li, a particularly well observed TDE. This modelling incorporates strong gravity optics. The full 900 d of ASASSN-14li X-ray observations are very well fit by a simple relativistic disc model, significantly improving upon previous work. The same underlying model also fits the final 1000 d of ASASSN-14li observations in three different UV bandpasses. Finally, we demonstrate that the analytic formulae reproduce the properties of full numerical modelling at both UV and X-ray wavelengths with great fidelity.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Evolution of relativistic thin discs with a finite ISCO stress: I. Stalled accretion

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 132-142

Authors:

Andrew Mummery, Steven Balbus

Abstract:

We present solutions to the relativistic thin disc evolutionary equation using an α-model for the turbulent stress tensor. Solutions with a finite stress at the innermost stable circular orbit (ISCO) give rise to bolometric light curves with a shallow power-law time dependence, in good agreement with those observed in tidal disruption events. A self-similar model based on electron scattering opacity, for example, yields a power-law index of −11/14, as opposed to −19/16 for the case of zero ISCO stress. These solutions correspond to an extended period of relaxation of the evolving disc which, like the light curves they produce, is not sustainable indefinitely. Cumulative departures from the approximation of exact circular orbits cause the power-law index to evolve slowly with time, leading eventually to the steeper fall-off associated with traditional zero ISCO stress models. These modified solutions are discussed in detail in a companion paper.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Evolution of relativistic thin discs with a finite ISCO stress: II. Late time behaviour

Monthly Notices of the Royal Astronomical Society Oxford University Press 489:1 (2019) 143-152

Authors:

Andrew Mummery, Steven Balbus

Abstract:

We present solutions to the relativistic thin disc evolutionary equation using a modified description of the mean fluid flow within the disc. The model takes into account the effects of sub-circular velocities in the innermost disc regions, and resolves otherwise unsustainable behaviour present in simple finite innermost stable circular orbit (ISCO) stress disc models. We show that the behaviour of a relativistic thin disc evolving with a finite ISCO stress is comprised of three distinct stages which join the ordinarily distinct finite and vanishing ISCO stress solutions into a fully continuous model parametrization. The most important prediction of our model is the existence of an intermediate stage of ‘stalled accretion’, controlled by a single dimensionless parameter. The hallmarks of this evolutionary phase appear to have been seen in General Relativistic MHD simulations as well as in the late time X-ray observations of tidal disruption events, but dedicated simulations and extended observations are needed for a deeper understanding.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet