Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Andrew Mummery

Leverhulme-Peierls Fellow

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Pulsars, transients and relativistic astrophysics
  • Theoretical astrophysics and plasma physics at RPC
andrew.mummery@physics.ox.ac.uk
Telephone: 01865 210826
Rudolf Peierls Centre for Theoretical Physics, room 50.05
  • About
  • Publications

The evolution of Kerr discs and late-time tidal disruption event light curves

Monthly Notices of the Royal Astronomical Society Oxford University Press 481:3 (2018) 3348-3356

Authors:

Steven Balbus, Andrew Mummery

Abstract:

An encounter between a passing star and a massive black hole at the centre of a galaxy, a so-called tidal disruption event or TDE, may leave a debris disc that subsequently accretes onto the hole. We solve for the time evolution of such a TDE disc, making use of an evolutionary equation valid for both the Newtonian and Kerr regimes. The late time luminosity emergent from such a disc is of interest as a model diagnostic, as it tends to follow a power law decline. The original simple ballistic fallback model, with equal mass in equal energy intervals, produces a −5/3 power law, while standard viscous disc descriptions yield a somewhat more shallow decline, with an index closer to −1.2. Of four recent, well-observed tidal disruption event candidates however, all had fall-off power law indices smaller than 1 in magnitude. In this work, we revisit the problem of thin disc evolution, solving this reduced problem in full general relativity. Our solutions produce power law indices that are in much better accord with observations. The late time observational data from many TDEs are generally supportive, not only of disc accretion models, but of finite stress persisting down to the innermost stable circular orbit.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet