Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Single strontium atom in an ion trap
Credit: David Nadlinger, University of Oxford

Dr David Nadlinger

Early Career Researcher (Merton College)

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
david.nadlinger@physics.ox.ac.uk
Telephone: 01865 (2)72265,01865 (2)72346
Programming blog
College profile
  • About
  • Publications

Experimental quantum key distribution certified by Bell's theorem

Nature Springer Nature 607:7920 (2022) 682-686

Authors:

Dp Nadlinger, P Drmota, Bc Nichol, G Araneda, D Main, R Srinivas, Dm Lucas, Cj Ballance, K Ivanov, Ey-Z Tan, P Sekatski, Rl Urbanke, R Renner, N Sangouard, J-D Bancal

Abstract:

Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorization<sup>1</sup> to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols such as the Bennett-Brassard scheme<sup>2</sup> provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realized so far are subject to a new class of attacks exploiting a mismatch between the quantum states or measurements implemented and their theoretical modelling, as demonstrated in numerous experiments<sup>3-6</sup>. Here we present the experimental realization of a complete quantum key distribution protocol immune to these vulnerabilities, following Ekert's pioneering proposal<sup>7</sup> to use entanglement to bound an adversary's information from Bell's theorem<sup>8</sup>. By combining theoretical developments with an improved optical fibre link generating entanglement between two trapped-ion qubits, we obtain 95,628 key bits with device-independent security<sup>9-12</sup> from 1.5 million Bell pairs created during eight hours of run time. We take steps to ensure that information on the measurement results is inaccessible to an eavesdropper. These measurements are performed without space-like separation. Our result shows that provably secure cryptography under general assumptions is possible with real-world devices, and paves the way for further quantum information applications based on the device-independence principle.
More details from the publisher
Details from ORA
More details
More details

High-rate high-fidelity entanglement of qubits across an elementary quantum network

Physical Review Letters American Physical Society 124:11 (2020) 110501

Authors:

Laurent Stephenson, David Nadlinger, Bethan Nichol, Peter Drmota, Timothy Ballance, Keshav Thirumalai, Joseph Goodwin, David Lucas, Christopher Ballance

Abstract:

We demonstrate remote entanglement of trapped-ion qubits via a quantum-optical fiber link with fidelity and rate approaching those of local operations. Two 88Sr+ qubits are entangled via the polarization degree of freedom of two spontaneously emitted 422 nm photons which are coupled by high-numerical-aperture lenses into single-mode optical fibers and interfere on a beam splitter. A novel geometry allows high-efficiency photon collection while maintaining unit fidelity for ion-photon entanglement. We generate heralded Bell pairs with fidelity 94% at an average rate 182 s−1 (success probability 2.18×10−4).

More details from the publisher
Details from ORA
More details
More details

Distributed quantum computing across an optical network link

Nature Nature Research 638:8050 (2025) 383-388

Authors:

D Main, P Drmota, DP Nadlinger, EM Ainley, A Agrawal, BC Nichol, R Srinivas, G Araneda, DM Lucas

Abstract:

Distributed quantum computing (DQC) combines the computing power of multiple networked quantum processing modules, ideally enabling the execution of large quantum circuits without compromising performance or qubit connectivity1, 2. Photonic networks are well suited as a versatile and reconfigurable interconnect layer for DQC; remote entanglement shared between matter qubits across the network enables all-to-all logical connectivity through quantum gate teleportation (QGT)3, 4. For a scalable DQC architecture, the QGT implementation must be deterministic and repeatable; until now, no demonstration has satisfied these requirements. Here we experimentally demonstrate the distribution of quantum computations between two photonically interconnected trapped-ion modules. The modules, separated by about two metres, each contain dedicated network and circuit qubits. By using heralded remote entanglement between the network qubits, we deterministically teleport a controlled-Z (CZ) gate between two circuit qubits in separate modules, achieving 86% fidelity. We then execute Grover’s search algorithm5—to our knowledge, the first implementation of a distributed quantum algorithm comprising several non-local two-qubit gates—and measure a 71% success rate. Furthermore, we implement distributed iSWAP and SWAP circuits, compiled with two and three instances of QGT, respectively, demonstrating the ability to distribute arbitrary two-qubit operations6. As photons can be interfaced with a variety of systems, the versatile DQC architecture demonstrated here provides a viable pathway towards large-scale quantum computing for a range of physical platforms.
More details from the publisher
Details from ORA
More details
More details

Low cross-talk optical addressing of trapped-ion qubits using a novel integrated photonic chip

Light: Science & Applications Springer Nature [academic journals on nature.com] 13:1 (2024) 199

Authors:

Ana S Sotirova, Bangshan Sun, Jamie D Leppard, Andong Wang, Mohan Wang, Andres Vazquez-Brennan, David P Nadlinger, Simon Moser, Alexander Jesacher, Chao He, Fabian Pokorny, Martin J Booth, Christopher J Ballance

Abstract:

Individual optical addressing in chains of trapped atomic ions requires the generation of many small, closely spaced beams with low cross-talk. Furthermore, implementing parallel operations necessitates phase, frequency, and amplitude control of each individual beam. Here, we present a scalable method for achieving all of these capabilities using a high-performance integrated photonic chip coupled to a network of optical fibre components. The chip design results in very low cross-talk between neighbouring channels even at the micrometre-scale spacing by implementing a very high refractive index contrast between the channel core and cladding. Furthermore, the photonic chip manufacturing procedure is highly flexible, allowing for the creation of devices with an arbitrary number of channels as well as non-uniform channel spacing at the chip output. We present the system used to integrate the chip within our ion trap apparatus and characterise the performance of the full individual addressing setup using a single trapped ion as a light-field sensor. Our measurements showed intensity cross-talk below ~10–3 across the chip, with minimum observed cross-talk as low as ~10–5.
More details from the publisher
Details from ORA
More details
More details

Verifiable blind quantum computing with trapped ions and single photons

Physical Review Letters American Physical Society 132:15 (2024) 150604

Authors:

P Drmota, Dp Nadlinger, D Main, Bc Nichol, Em Ainley, D Leichtle, A Mantri, E Kashefi, R Srinivas, G Araneda, Cj Ballance, Dm Lucas

Abstract:

We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection—key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud.

More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet