Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Dr Adam Nahum

Academic Visitor

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
  • About
  • Publications

Length distributions in loop soups.

Physical review letters 111:10 (2013) 100601

Authors:

Adam Nahum, JT Chalker, P Serna, M Ortuño, AM Somoza

Abstract:

Statistical lattice ensembles of loops in three or more dimensions typically have phases in which the longest loops fill a finite fraction of the system. In such phases it is natural to ask about the distribution of loop lengths. We show how to calculate moments of these distributions using CP(n-1) or RP(n-1) and O(n) σ models together with replica techniques. The resulting joint length distribution for macroscopic loops is Poisson-Dirichlet with a parameter θ fixed by the loop fugacity and by symmetries of the ensemble. We also discuss features of the length distribution for shorter loops, and use numerical simulations to test and illustrate our conclusions.
More details from the publisher
More details
More details
Details from ArXiV

Loop models with crossings

Physical Review B American Physical Society (APS) 87:18 (2013) 184204

Authors:

Adam Nahum, P Serna, AM Somoza, M Ortuño
More details from the publisher

Loop models with crossings

(2013)

Authors:

Adam Nahum, P Serna, AM Somoza, M Ortuño
More details from the publisher
Details from ArXiV

Universal statistics of vortex lines.

Phys Rev E Stat Nonlin Soft Matter Phys 85:3-1 (2012) 031141

Authors:

A Nahum, JT Chalker

Abstract:

We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP^{k|k} model (essentially the CP^{n-1} model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP^{k|k} model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP^{2l|2l} model (or the RP^{n-1} model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP^{k|k} σ model with a θ term.

Universal statistics of vortex lines.

Physical review. E, Statistical, nonlinear, and soft matter physics 85:3 Pt 1 (2012) 031141

Authors:

Adam Nahum, JT Chalker

Abstract:

We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP(k|k) model (essentially the CP(n-1) model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP(k|k) model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP(2l|2l) model (or the RP(n-1) model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP(k|k) σ model with a θ term.
More details from the publisher
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet