Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Energy absorption in the laser-QED regime

(2019)

Authors:

Alex F Savin, Aimee J Ross, Ramy Aboushelbaya, Marko W Mayr, Ben Spiers, Robin H-W Wang, Peter A Norreys
More details from the publisher

Single-shot frequency-resolved optical gating for retrieving the pulse shape of high energy picosecond pulses

Review of Scientific Instruments AIP Publishing 89:10 (2018) 103509

Authors:

R Aboushelbaya, Alexander Savin, L Ceurvorst, J Sadler, PA Norreys, AS Davies, DH Froula, A Boyle, M Galimberti, P Oliveira, B Parry, Y Katzir, K Glize

Abstract:

Accurate characterization of laser pulses used in experiments is a crucial step to the analysis of their results. In this paper, a novel single-shot frequency-resolved optical gating (FROG) device is described, one that incorporates a dispersive element which allows it to fully characterize pulses up to 25 ps in duration with a 65 fs per pixel temporal resolution. A newly developed phase retrieval routine based on memetic algorithms is implemented and shown to circumvent the stagnation problem that often occurs with traditional FROG analysis programs when they encounter a local minimum.
More details from the publisher
Details from ORA
More details
More details

Observation of Laser Power Amplification in a Self-Injecting Laser Wakefield Accelerator

Physical Review Letters 120:25 (2018)

Authors:

MJV Streeter, S Kneip, MS Bloom, RA Bendoyro, O Chekhlov, AE Dangor, A Döpp, CJ Hooker, J Holloway, J Jiang, NC Lopes, H Nakamura, PA Norreys, CAJ Palmer, PP Rajeev, J Schreiber, DR Symes, M Wing, SPD Mangles, Z Najmudin

Abstract:

© 2018 American Physical Society. We report on the depletion and power amplification of the driving laser pulse in a strongly driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from 187±11 TW to a maximum of 318±12 TW after 13 mm of propagation in a plasma density of 0.9×1018 cm-3. The power amplification is correlated with the injection and acceleration of electrons in the nonlinear wakefield. This process is modeled by including a localized redshift and subsequent group delay dispersion at the laser pulse front.
More details from the publisher
Details from ORA
More details

Advantages to a diverging Raman amplifier

Communications Physics Nature Publishing Group 1 (2018) 19

Authors:

James Sadler, LO Silva, RA Fonseca, K Glize, Muhammad Kasim, Alex Savin, Ramy Aboushelbaya, Marko Mayr, Benjamin Spiers, Robin H-W Wang, R Bingham, RMGM Trines, Peter Norreys

Abstract:

The plasma Raman instability can efficiently compress a nanosecond long high power laser pulse to sub-picosecond duration. Although many authors envisaged a converging beam geometry for Raman amplification, here we propose the exact opposite geometry; the amplification should start at the intense focus of the seed. We generalise the coupled laser envelope equations to include this non-collimated case. The new geometry completely eradicates the usual trailing secondary peaks of the output pulse, which typically lower the efficiency by half. It also reduces, by orders of magnitude, the initial seed pulse energy required for efficient operation. As in the collimated case, the evolution is self-similar, although the temporal pulse envelope is different. A two-dimensional particle-in-cell simulation demonstrates efficient amplification of a diverging seed with only 0:3mJ energy. The pulse has no secondary peaks and almost constant intensity as it amplifies and diverges.
More details from the publisher
Details from ORA
More details

Channel optimization of high-intensity laser beams in millimeter-scale plasmas

Physical Review E American Physical Society 97:4 (2018) 043208

Authors:

Luke Ceurvorst, Alexander Savin, Naren Ratan, J Sadler, Peter Norreys, H Habara, KA Tanaka, S Zhang, Wei, S Ivancic, D Froula, W Theobald

Abstract:

Channeling experiments were performed at the OMEGA EP facility using relativistic intensity ( > 10 18 W / cm 2 ) kilojoule laser pulses through large density scale length ( ∼ 390 – 570 μ m ) laser-produced plasmas, demonstrating the effects of the pulse's focal location and intensity as well as the plasma's temperature on the resulting channel formation. The results show deeper channeling when focused into hot plasmas and at lower densities, as expected. However, contrary to previous large-scale particle-in-cell studies, the results also indicate deeper penetration by short (10 ps), intense pulses compared to their longer-duration equivalents. This new observation has many implications for future laser-plasma research in the relativistic regime.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet