Operation of target diagnostics in a petawatt laser environment (invited)
Review of Scientific Instruments 77:10 (2006)
Abstract:
The operation of target diagnostics in a high-energy petawatt laser environment is made challenging by the large number of energetic electrons, hard x rays, and energetic particles produced in laser-target interactions. The charged particles and x rays from the target create secondary radiation and a large electromagnetic pulse (EMP) when they hit structures inside the target chamber. The primary particles create secondary particles and radiation that can create excessive background in sensitive detectors. The large EMP can impair or damage electronic equipment and detectors, especially inside the target chamber. Shielding and EMP mitigation strategies developed during experiments at the Rutherford Appleton Vulcan petawatt laser facility will be presented for a variety of detection systems, such as single-photon-counting x-ray charge-coupled device cameras, multiple diamond x-ray detectors, and scintillator-photomultiplier detectors. These strategies will be applied to the development of diagnostic systems for the OMEGA EP, high-energy petawatt laser facility, currently under construction at the Laboratory for Laser Energetics. © 2006 American Institute of Physics.Radiological characterisation of photon radiation from ultra-high-intensity laser-plasma and nuclear interactions
Journal of Radiological Protection 26:3 (2006) 277-286
Abstract:
With the increasing number of multi-terawatt (1012 W) and petawatt (1015 W) laser interaction facilities being built, the need for a detailed understanding of the potential radiological hazards is required and their impact on personnel is of major concern. Experiments at a number of facilities are being undertaken to achieve this aim. This paper describes the recent work completed on the Vulcan petawatt laser system at the CCLRC Rutherford Appleton Laboratory, where photon doses of up to 43 mSv at 1 m per shot have been measured during commissioning studies. It also overviews the shielding in place on the facility in order to comply with the Ionising Radiation Regulations 1999 (IRR99), maintaining a dose to personnel of less than 1 mSv yr-1 and as low as reasonably practicable (ALARP). © 2006 IOP Publishing Ltd.Erratum: Evidence of photon acceleration by laser wake fields (Physics of Plasmas (2006) 13 (033108))
Physics of Plasmas 13:7 (2006)
Electron beam hollowing in laser-solid interactions
Plasma Physics and Controlled Fusion 48:8 (2006) 1181-1199
Abstract:
Electron beam hollowing in a plasma is investigated using an analytical, rigid beam model and two different hybrid codes in an attempt to explain observations of hollow plasma formations on the back of plastic targets in experiments carried out on the Vulcan terawatt laser. The relevance of the results to electron transport in fast ignition inertial confinement fusion is considered using dimensionless scaling parameters. © 2006 IOP Publishing Ltd.The development of a flexible large area neutron spectrometer for ultra-intense laser-plasma interaction experiments
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 564:1 (2006) 486-490