Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Using high-power lasers for detection of elastic photon-photon scattering

Physical Review Letters 96:8 (2006)

Authors:

E Lundström, G Brodin, J Lundin, M Marklund, R Bingham, J Collier, JT Mendonça, P Norreys

Abstract:

The properties of four-wave interaction via the nonlinear quantum vacuum is investigated. The effect of the quantum vacuum is to generate photons with new frequencies and wave vectors, due to elastic photon-photon scattering. An expression for the number of generated photons is derived, and using state-of-the-art laser data it is found that the number of photons can reach detectable levels. In particular, the prospect of using the high-repetition Astra Gemini system at the Rutherford Appleton Laboratory is discussed. The problem of noise sources is reviewed, and it is found that the noise level can be reduced well below the signal level. Thus, detection of elastic photon-photon scattering may for the first time be achieved. © 2006 The American Physical Society.
More details from the publisher
More details

28pUG-3 激光PWレーザーを用いた荷電粒子加速研究 : 核反応生成粒子を利用した高速プロトンの方向・エネルギー分布計測(28pUG 領域2,ビーム物理領域合同 高エネルギー密度状態の科学(プラズマ粒子加速物理),ビーム物理領域)

(2006) 113

Authors:

中村 浩隆, 兒玉 了祐, 反保 元伸, 中堤 基彰, 粟野 信哉, 大屋 章, 谷本 壮, 森 芳孝, 柏原 守, 福持 修司, 木村 和哉, 中新 信彦, 辻 和樹, 近藤 公伯, 田中 和夫, P Norreys, RB Stephens, M Key, GODグループ, ターゲットグループ, 三間 圀興
More details from the publisher

Observation of annular electron beam transport in multi-TeraWatt laser-solid interactions

Plasma Physics and Controlled Fusion 48:2 (2006)

Authors:

PA Norreys, JS Green, JR Davies, M Tatarakis, EL Clark, FN Beg, AE Dangor, KL Lancaster, MS Wei, M Zepf, K Krushelnick

Abstract:

Electron energy transport experiments conducted on the Vulcan 100 TW laser facility with large area foil targets are described. For plastic targets it is shown, by the plasma expansion observed in shadowgrams taken after the interaction, that there is a transition between the collimated electron flow previously reported at the 10 TW power level to an annular electron flow pattern with a 20° divergence angle for peak powers of 68 TW. Intermediate powers show that both the central collimated flow pattern and the surrounding annular-shaped heated region can co-exist. The measurements are consistent with the Davies rigid beam model for fast electron flow (Davies 2003 Phys. Rev. E 68 056404) and LSP modelling provides additional insight into the observed results. © 2006 IOP Publishing Ltd.
More details from the publisher

Fast heating of high-density plasmas with a reentrant cone concept

Fusion Science and Technology 49:3 (2006) 316-326

Authors:

R Kodama, PA Norreys, Y Sentoku, RB Campbell

Abstract:

A reentrant cone concept for efficient heating of high-density plasmas has been studied as an advanced fast ignition scheme. The roles of the reentrant cone, as indicated by particle-in-cell (PIC) code simulations and confirmed by basic experiments, are reviewed, particularly the efficient collection and guidance of the laser light into the cone tip and the direction of the energetic electrons into the high-density region. It has been shown that the energetic electrons converge to the tip of the cone as a result of the surface electron flow guided by self-generated quasi-static magnetic fields and electrostatic sheath fields. As a result, the energetic electron density at the tip is locally greater than the case of using an open geometry such as a normal flat foil target. Using these advantageous properties of the reentrant cone, efficient fast heating of imploded high-density plasmas has been demonstrated in integrated fast ignition experiments. A hybrid PIC code (LSP) has been used to understand the relativistic electron beam thermalization and subsequent heating of highly compressed plasmas. The simulation results are in reasonable agreement with the integrated experiments. Anomalous stopping appears to be present and is created by the growth and saturation of an electromagnetic filamentation mode that generates a strong back-electromagnetic force impeding energetic electrons.
More details from the publisher

Integral experiments for fast ignition research

Fusion Science and Technology 49:3 (2006) 342-357

Authors:

KA Tanaka, R Kodama, PA Norreys

Abstract:

This paper reviews the important schemes that have been investigated thus far in fast ignition research. Integral experiments for fast ignition research have been conducted utilizing various schemes: (a) double-pulse experiments with two 100-ps pulses injected to a compressed core, (b) gold cone-guided implosion with 100-TW laser pulse heating, and (c) imploded core heated by both a 100-TW and petawatt laser pulses through gold cones. Reviewing these results, several important issues were raised for further development of fast ignition research. The imploded core heated by a petawatt laser through a gold cone showed a 103 D-D neutron increase compared to the one with only the CD shell implosion.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • Current page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet