Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Electron beam hollowing in laser-solid interactions

Plasma Physics and Controlled Fusion 48:8 (2006) 1181-1199

Authors:

JR Davies, JS Green, PA Norreys

Abstract:

Electron beam hollowing in a plasma is investigated using an analytical, rigid beam model and two different hybrid codes in an attempt to explain observations of hollow plasma formations on the back of plastic targets in experiments carried out on the Vulcan terawatt laser. The relevance of the results to electron transport in fast ignition inertial confinement fusion is considered using dimensionless scaling parameters. © 2006 IOP Publishing Ltd.
More details from the publisher

The development of a flexible large area neutron spectrometer for ultra-intense laser-plasma interaction experiments

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 564:1 (2006) 486-490

Authors:

H Habara, KL Lancaster, PA Norreys

Abstract:

A flexible multi-channel neutron spectrometer has been constructed to measure both the ion temperature and acceleration mechanisms in ultra-intense laser-plasma interactions. Angularly resolved neutron spectra are required to deduce the momentum distribution of ions accelerated by the intense electric field. The first neutron spectra have been obtained using this instrument in a 100-TW class laser interaction with deuterated plastic targets. These show a slight Doppler shift to lower energy side of the center of mass energy of d (d, n)3 He reactions at 2.45 MeV. A three-dimensional Monte-Carlo calculation of the neutron generation confirms the fast ion acceleration from the rear side of a solid target which has a Maxwellian momentum distribution. © 2006 Elsevier B.V. All rights reserved.
More details from the publisher

Proton radiography of a laser-driven implosion

Physical Review Letters 97:4 (2006)

Authors:

AJ MacKinnon, PK Patel, M Borghesi, RC Clarke, RR Freeman, H Habara, SP Hatchett, D Hey, DG Hicks, S Kar, MH Key, JA King, K Lancaster, D Neely, A Nikkro, PA Norreys, MM Notley, TW Phillips, L Romagnani, RA Snavely, RB Stephens, RPJ Town

Abstract:

Protons accelerated by a picosecond laser pulse have been used to radiograph a 500μm diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054μm and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3±1g/cm3 core with diameter 85±10μm. Scaling simulations show that protons >50MeV are required to diagnose asymmetry in ignition scale conditions. © 2006 The American Physical Society.
More details from the publisher
More details

High harmonic generation in the relativistic limit

Nature Physics 2:7 (2006) 456-459

Authors:

B Dromey, M Zepf, A Gopal, K Lancaster, MS Wei, K Krushelnick, M Tatarakis, N Vakakis, S Moustaizis, R Kodama, M Tampo, C Stoeckl, R Clarke, H Habara, D Neely, S Karsch, P Norreys
More details from the publisher

Clark et al. Reply

Physical Review Letters 96:24 (2006)

Authors:

EL Clark, K Krushelnick, M Zepf, M Tatarakis, FN Beg, PA Norreys, AE Dangor
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • Current page 57
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet