Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Dunes near Ulyxis Rupes by ExoMars TGO CaSSIS

Dunes near Ulyxis Rupes by ExoMars TGO CaSSIS

Credit: ESA/UBern

Dr Kevin Olsen

UKSA Mars Science Fellow

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
kevin.olsen@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory
  • About
  • Publications

Seasonal changes in the vertical structure of ozone in the Martian lower atmosphere and its relationship to water vapour.

University of Oxford (2022)

Abstract:

Ozone and water vapour volume mixing ratio vertical profiles in the Martian atmosphere derived from solar occultation mid-infrared spectra recorded by the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter. Data were recorded between mid Mars year 34 to early Mars year 36. Trace gas retrievals were done using the JPL Gas Fitting Software.
More details from the publisher
Details from ORA

Seasonal changes in the vertical structure of ozone in the Martian lower atmosphere and its relationship to water vapour - Temperature and GCM data used

University of Oxford (2022)

Authors:

Kevin Olsen, Anna Fedorova, Francois Forget

Abstract:

Temperature data derived from ACS NIR observations of Mars used in the paper: Seasonal changes in the vertical structure of ozone in the Martian lower atmosphere and its relationship to water vapour. LMD GCM data interpolated to the terminator (T/P/density/H2O/O3) used in the paper: Seasonal changes in the vertical structure of ozone in the Martian lower atmosphere and its relationship to water vapour.
More details from the publisher
Details from ORA

Isotopic composition of CO2 in the atmosphere of Mars: Fractionation by diffusive separation observed by the ExoMars Trace Gas Orbiter

Journal of Geophysical Research: Planets American Geophysical Union 126:12 (2021) e2021JE006992

Authors:

Juan Alday, Colin F Wilson, Patrick GJ Irwin, Alexander Trokhimovskiy, Franck Montmessin, Anna A Fedorova, Denis A Belyaev, Kevin S Olsen, O Korablev, Franck Lefèvre, Ashwin S Braude, Lucio Baggio, Andrey Patrakeev, Alexey Shakun

Abstract:

Isotopic ratios in atmospheric CO2 are shaped by various processes throughout Mars' history, and can help understand what the atmosphere of early Mars was like to sustain liquid water on its surface. In this study, we monitor the O and C isotopic composition of CO2 between 70 and 130 km for more than half a Martian year using solar occultation observations by the Atmospheric Chemistry Suite onboard the ExoMars Trace Gas Orbiter. We find the vertical trends of the isotopic ratios to be consistent with the expectations from diffusive separation above the homopause, with average values below this altitude being consistent with Earth-like fractionation (δ13C = −3 ± 37‰; δ18O = −29 ± 38‰; and δ17O = −11 ± 41‰). Using these measurements, we estimate that at least 20%–40% of primordial C on Mars has escaped to space throughout history. The total amount of C lost from the atmosphere is likely to be well in excess of this lower limit, due to carbonate formation and further sink processes. In addition, we propose a photochemical transfer of light O from H2O to CO2 to explain the larger enrichment in the 18O/16O ratio in H2O than in CO2.
More details from the publisher
Details from ORA
More details

A stringent upper limit of 20 pptv for methane on Mars and constraints on its dispersion outside Gale crater

Astronomy and Astrophysics EDP Sciences 650 (2021) A140

Authors:

F Montmessin, Oi Korablev, A Trokhimovskiy, F Lefevre, Aa Fedorova, L Baggio, A Irbah, G Lacombe, Kevin S Olsen, As Braude, Da Belyaev, J Alday, F Forget, F Daerden, J Pla-Garcia, S Rafkin, CF Wilson, A Patrakeev, A Shakun, Jl Bertaux

Abstract:

Context. Reports on the detection of methane in the Martian atmosphere have motivated numerous studies aiming to confirm or explain its presence on a planet where it might imply a biogenic or more likely a geophysical origin.
Aims. Our intent is to complement and improve on the previously reported detection attempts by the Atmospheric Chemistry Suite (ACS) on board the ExoMars Trace Gas Orbiter (TGO). This latter study reported the results of a campaign that was a few months in length, and was significantly hindered by a dusty period that impaired detection performances.
Methods. We unveil 640 solar occultation measurements gathering 1.44 Martian years worth of data produced by the ACS.
Results. No methane was detected. Probing the clear northern summer season allowed us to reach 1σ upper limits of around 10 pptv (20 pptv at 2σ), with an annual mean of the smallest upper limits of 20 pptv. Upper limits are controlled by the amount of dust in the atmosphere, which impairs detection performance around the equator and during the southern spring and summer seasons. Observations performed near Gale crater yielded 1σ upper limits of up to four times less than the background values measured by the Curiosity rover during the corresponding seasons.
Conclusions. Reconciliation of the absence of methane in the TGO spectra with the positive detections by Curiosity is even more difficult in light of this annual survey performed by ACS. Stronger constraints are placed on the physical and chemical mechanism capable of explaining why the mean of the best overall upper limits of ACS is ten times below the smallest methane abundances measured by Curiosity.
More details from the publisher
Details from ORA
More details

Isotopes of chlorine from HCl in the Martian atmosphere

Astronomy and Astrophysics EDP Sciences 651 (2021) A32

Authors:

A Trokhimovskiy, Aa Fedorova, Ks Olsen, J Alday, O Korablev, F Montmessin, F Lefevre, A Patrakeev, D Belyaev, Av Shakun

Abstract:

Hydrogen chloride gas was recently discovered in the atmosphere of Mars during southern summer seasons. Its connection with potential chlorine reservoirs and the related atmospheric chemistry is now of particular interest and actively studied. Measurements by the Atmospheric Chemistry Suite mid-infrared channel (ACS MIR) on the ExoMars Trace Gas Orbiter allow us to measure the ratio of hydrogen chloride two stable isotopologues, H35Cl and H37Cl. This work describes the observation, processing technique, and derived values for the chloride isotope ratio. Unlike other volatiles in the Martian atmosphere, because it is enriched with heavier isotopes, the δ37Cl is measured to be - 7 ± 20°, which is almost indistinguishable from the terrestrial ratio for chlorine. This value agrees with available measurements of the surface materials on Mars. We conclude that chlorine in observed HCl likely originates from dust and is not involved in any long-term, surface-atmosphere cycle.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet