Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Dunes near Ulyxis Rupes by ExoMars TGO CaSSIS

Dunes near Ulyxis Rupes by ExoMars TGO CaSSIS

Credit: ESA/UBern

Dr Kevin Olsen

UKSA Mars Science Fellow

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary atmosphere observation analysis
  • Planetary surfaces
  • Solar system
  • Space instrumentation
kevin.olsen@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory
  • About
  • Publications

Revealing a high water abundance in the upper mesosphere of Mars with ACS onboard TGO

Geophysical Research Letters Wiley 48:10 (2021) e2021GL093411

Authors:

Denis A Belyaev, Anna A Fedorova, Alexander Trokhimovskiy, Juan Alday, Franck Montmessin, Oleg I Korablev, Franck Lefevre, Andrey S Patrakeev, Kevin S Olsen, Alexey V Shakun

Abstract:

We present the first water vapor profiles encompassing the upper mesosphere of Mars, 100–120 km, far exceeding the maximum altitudes where remote sensing has been able to observe water to date. Our results are based on solar occultation measurements by Atmospheric Chemistry Suite (ACS) onboard the ExoMars Trace Gas Orbiter (TGO). The observed wavelength range around 2.7 μm possesses strong CO2 and H2O absorption lines allowing sensitive temperature and density retrievals. We report a maximum H2O mixing ratio varying from 10 to 50 ppmv at 100–120 km during the global dust storm (GDS) of Martian Year (MY) 34 and around southern summer solstice of MY 34 and 35. During other seasons water remains persistently below ∼2 ppmv. We claim that contributions of the MY34 GDS and perihelion periods into the projected hydrogen escape from Mars are nearly equivalent.
More details from the publisher
Details from ORA
More details

Upper limits for phosphine (PH3) in the atmosphere of Mars

Astronomy and Astrophysics EDP Sciences 649:May 2021 (2021) L1

Authors:

Ks Olsen, A Trokhimovskiy, As Braude, O Korablev, A Fedorova, Colin Wilson, Patrick Irwin, Juan Alday Parejo

Abstract:

Phosphine (PH3) is proposed to be a possible biomarker in planetary atmospheres and has been claimed to have been observed in the atmosphere of Venus, sparking interest in the habitability of Venus’s atmosphere. Observations of another biomarker, methane (CH4), have been reported several times in the atmosphere of Mars, hinting at the possibility of a past or present biosphere. The Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter has a spectral range that includes several absorption lines of PH3 with line strengths comparable to previously observed CH4 lines. The signature of PH3 was not observed in the 192 observations made over a full Martian year of observations, and here we report upper limits of 0.1–0.6 ppbv.
More details from the publisher
Details from ORA
More details

The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter

Nature Geoscience Springer Nature 14:2 (2021) 67-71

Authors:

Ks Olsen, F Lefevre, F Montmessin, Aa Fedorova, A Trokhimovskiy, L Baggio, O Korablev, J Alday, Cf Wilson, F Forget, Da Belyaev, A Patrakeev, Av Grigoriev, A Shakun

Abstract:

Carbon monoxide (CO) is the main product of CO2 photolysis in the Martian atmosphere. Production of CO is balanced by its loss reaction with OH, which recycles CO into CO2. CO is therefore a sensitive tracer of the OH-catalysed chemistry that contributes to the stability of CO2 in the atmosphere of Mars. To date, CO has been measured only in terms of vertically integrated column abundances, and the upper atmosphere, where CO is produced, is largely unconstrained by observations. Here we report vertical profiles of CO from 10 to 120 km, and from a broad range of latitudes, inferred from the Atmospheric Chemistry Suite on board the ExoMars Trace Gas Orbiter. At solar longitudes 164–190°, we observe an equatorial CO mixing ratio of ~1,000 ppmv (10–80 km), increasing towards the polar regions to more than 3,000 ppmv under the influence of downward transport of CO from the upper atmosphere, providing a view of the Hadley cell circulation at Mars’s equinox. Observations also cover the 2018 global dust storm, during which we observe a prominent depletion in the CO mixing ratio up to 100 km. This is indicative of increased CO oxidation in a context of unusually large high-altitude water vapour, boosting OH abundance.
More details from the publisher
Details from ORA
More details

Transient HCl in the atmosphere of Mars

University of Oxford (2021)

Abstract:

Data supporting the publication Transient HCl in the atmosphere of Mars in Sci. Adv. Data was created using the GGG Software Suite using measurements made with the ExoMars Trace Gas Orbiter Atmospheric Chemistry Suite.
More details from the publisher
Details from ORA

Martian cloud climatology and life cycle extracted from Mars Express OMEGA spectral images

Icarus Elsevier 353 (2021) 114101

Authors:

André Szantai, Joachim Audouard, François Forget, Kevin S Olsen, Brigitte Gondet, Ehouarn Millour, Jean-Baptiste Madeleine, Alizée Pottier, Yves Langevin, Jean-Pierre Bibring
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet