Seasonal and decadal forecasts of Atlantic Sea surface temperatures using a linear inverse model
Climate Dynamics Springer Verlag 49:5-6 (2016) 1833-1845
Abstract:
Predictability of Atlantic Ocean sea surface temperatures (SST) on seasonal and decadal timescales is investigated using a suite of statistical linear inverse models (LIM). Observed monthly SST anomalies in the Atlantic sector (between 22(Formula presented.)S and 66(Formula presented.)N) are used to construct the LIMs for seasonal and decadal prediction. The forecast skills of the LIMs are then compared to that from two current operational forecast systems. Results indicate that the LIM has good forecast skill for time periods of 3–4 months on the seasonal timescale with enhanced predictability in the spring season. On decadal timescales, the impact of inter-annual and intra-annual variability on the predictability is also investigated. The results show that the suite of LIMs have forecast skill for about 3–4 years over most of the domain when we use only the decadal variability for the construction of the LIM. Including higher frequency variability helps improve the forecast skill and maintains the correlation of LIM predictions with the observed SST anomalies for longer periods. These results indicate the importance of temporal scale interactions in improving predictability on decadal timescales. Hence, LIMs can not only be used as benchmarks for estimates of statistical skill but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.$p$-adic Distance, Finite Precision and Emergent Superdeterminism: A Number-Theoretic Consistent-Histories Approach to Local Quantum Realism
ArXiv 1609.08148 (2016)
Calibrating climate change time-slice projections with estimates of seasonal forecast reliability
Journal of Climate American Meteorological Society 29:10 (2016) 3831-3840
Abstract:
In earlier work, it was proposed that the reliability of climate change projections, particularly of regional rainfall, could be improved if such projections were calibrated using quantitative measures of reliability obtained by running the same model in seasonal forecast mode. This proposal is tested for fast atmospheric processes (such as clouds and convection) by considering output from versions of the same atmospheric general circulation model run at two different resolutions and forced with prescribed sea surface temperatures and sea ice. Here output from the high-resolution version of the model is treated as a proxy for truth. The reason for using this approach is simply that the twenty-first-century climate change signal is not yet known and, hence, no climate change projections can be verified using observations. Quantitative assessments of reliability of the low-resolution model, run in seasonal hindcast mode, are used to calibrate climate change time-slice projections made with the same low-resolution model. Results show that the calibrated climate change probabilities are closer to the proxy truth than the uncalibrated probabilities. Given that seasonal forecasts are performed operationally already at several centers around the world, in a seamless forecast system they provide a resource that can be used without cost to help calibrate climate change projections and make them more reliable for users.Oceanic stochastic parametrizations in a seasonal forecast system
Monthly Weather Review American Meteorological Society 144:5 (2016) 1867-1875