On the use of scale-dependent precision in Earth System modelling
Quarterly Journal of the Royal Meteorological Society John Wiley & Sons Ltd 143:703 (2017) 897-908
Abstract:
Increasing the resolution of numerical models has played a large part in improving the accuracy of weather and climate forecasts in recent years. Until now, this has required the use of ever more powerful computers, the energy costs of which are becoming increasingly problematic. It has therefore been proposed that forecasters switch to using more efficient ‘reduced precision’ hardware capable of sacrificing unnecessary numerical precision to save costs. Here, an extended form of the Lorenz ‘96 idealized model atmosphere is used to test whether more accurate forecasts could be produced by lowering numerical precision more at smaller spatial scales in order to increase the model resolution. Both a scale-dependent mixture of single- and half-precision – where numbers are represented with fewer bits of information on smaller spatial scales – and ‘stochastic processors’ – where random ‘bit-flips’ are allowed for small-scale variables – are emulated on conventional hardware. It is found that high-resolution parametrized models with scale-selective reduced precision yield better short-term and climatological forecasts than lower resolution parametrized models with conventional precision for a relatively small increase in computational cost. This suggests that a similar approach in real-world models could lead to more accurate and efficient weather and climate forecasts.Single Precision in Weather Forecasting Models: An Evaluation with the IFS
MONTHLY WEATHER REVIEW 145:2 (2017) 495-502
Stochastic parameterization and El Niño–Southern Oscillation
Journal of Climate American Meteorological Society 30:1 (2016) 17-38
Abstract:
El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical Pacific. However, the models in the ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) have large deficiencies in ENSO amplitude, spatial structure, and temporal variability. The use of stochastic parameterizations as a technique to address these pervasive errors is considered. The multiplicative stochastically perturbed parameterization tendencies (SPPT) scheme is included in coupled integrations of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4). The SPPT scheme results in a significant improvement to the representation of ENSO in CAM4, improving the power spectrum and reducing the magnitude of ENSO toward that observed. To understand the observed impact, additive and multiplicative noise in a simple delayed oscillator (DO) model of ENSO is considered. Additive noise results in an increase in ENSO amplitude, but multiplicative noise can reduce the magnitude of ENSO, as was observed for SPPT in CAM4. In light of these results, two complementary mechanisms are proposed by which the improvement occurs in CAM. Comparison of the coupled runs with a set of atmosphere-only runs indicates that SPPT first improve the variability in the zonal winds through perturbing the convective heating tendencies, which improves the variability of ENSO. In addition, SPPT improve the distribution of westerly wind bursts (WWBs), important for initiation of El Niño events, by increasing the stochastic component of WWB and reducing the overly strong dependency on SST compared to the control integration.Atmospheric seasonal forecasts of the twentieth century: Multi-decadal variability in predictive skill of the winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution
Quarterly Journal of the Royal Meteorological Society Wiley 143:703 (2016) 917-926
Abstract:
Based on skill estimates from hindcasts made over the last couple of decades, recent studies have suggested that considerable success has been achieved in forecasting winter climate anomalies over the Euro-Atlantic area using current-generation dynamical forecast models. However, previous-generation models had shown that forecasts of winter climate anomalies in the 1960s and 1970s were less successful than forecasts of the 1980s and 1990s. Given that the more recent decades have been dominated by the North Atlantic Oscillation (NAO) in its positive phase, it is important to know whether the performance of current models would be similarly skilful when tested over periods of a predominantly negative NAO. To this end, a new ensemble of atmospheric seasonal hindcasts covering the period 1900–2009 has been created, providing a unique tool to explore many aspects of atmospheric seasonal climate prediction. In this study we focus on two of these: multi-decadal variability in predicting the winter NAO, and the potential value of the long seasonal hindcast datasets for the emerging science of probabilistic event attribution. The existence of relatively low skill levels during the period 1950s–1970s has been confirmed in the new dataset. The skillof the NAO forecasts is larger, however, in earlier and later periods. Whilst these inter-decadal differences in skill are, by themselves, only marginally statistically significant, the variations in skill strongly co-vary with statistics of the general circulation itself suggesting that such differences are indeed physically based. The mid-century period of low forecast skill coincides with a negative NAO phase but the relationship between the NAO phase/amplitude and forecast skill is more complex than linear. Finally, we show how seasonal forecast reliability can be of importance for increasing confidence in statements of causes of extreme weather and climate events, including effects of anthropogenic climate change.Impact of stochastic physics on tropical precipitation in the coupled ECMWF model
Quarterly Journal of the Royal Meteorological Society Wiley 143:703 (2016) 852-865