Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Felix Parra Diaz

Professor of Physics

Research theme

  • Plasma physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
felix.parradiaz@physics.ox.ac.uk
Rudolf Peierls Centre for Theoretical Physics
  • About
  • Publications

The effect of diamagnetic flows on turbulent driven ion toroidal rotationa)

Physics of Plasmas AIP Publishing 21:5 (2014) 056106

Authors:

JP Lee, M Barnes, FI Parra, EA Belli, J Candy
More details from the publisher
More details

When omnigeneity fails

(2014)

Authors:

Felix I Parra, Ivan Calvo, Jose Luis Velasco, J Arturo Alonso
More details from the publisher
Details from ArXiV

Effect on plasma rotation of lower hybrid (LH) waves in Alcator C-Mod

AIP Conference Proceedings AIP Publishing 1580:1 (2014) 398-401

Authors:

JP Lee, M Barnes, RR Parker, JE Rice, FI Parra, PT Bonoli, ML Reinke
More details from the publisher
More details

Radially global $δf$ computation of neoclassical phenomena in a tokamak pedestal

ArXiv 1312.2148 (2013)

Authors:

Matt Landreman, Felix I Parra, Peter J Catto, Darin R Ernst, Istvan Pusztai

Abstract:

Conventional radially-local neoclassical calculations become inadequate if the radial gradient scale lengths of the H-mode pedestal become as small as the poloidal ion gyroradius. Here, we describe a radially global $\delta f$ continuum code that generalizes neoclassical calculations to allow stronger gradients. As with conventional neoclassical calculations, the formulation is time-independent and requires only the solution of a single sparse linear system. We demonstrate precise agreement with an asymptotic analytic solution of the radially global kinetic equation in the appropriate limits of aspect ratio and collisionality. This agreement depends crucially on accurate treatment of finite orbit width effects.
Details from ArXiV
More details from the publisher

Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade

Nuclear Fusion 53:10 (2013)

Authors:

H Meyer, IG Abel, RJ Akers, A Allan, SY Allan, LC Appel, O Asunta, M Barnes, NC Barratt, N Ben Ayed, JW Bradley, J Canik, P Cahyna, M Cecconello, CD Challis, IT Chapman, D Ciric, G Colyer, NJ Conway, M Cox, BJ Crowley, SC Cowley, G Cunningham, A Danilov, A Darke, MFM De Bock, G De Temmerman, RO Dendy, P Denner, D Dickinson, AY Dnestrovsky, Y Dnestrovsky, MD Driscoll, B Dudson, D Dunai, M Dunstan, P Dura, S Elmore, AR Field, G Fishpool, S Freethy, W Fundamenski, L Garzotti, YC Ghim, KJ Gibson, MP Gryaznevich, J Harrison, E Havlíčková, NC Hawkes, WW Heidbrink, TC Hender, E Highcock, D Higgins, P Hill, B Hnat, MJ Hole, J Horáček, DF Howell, K Imada, O Jones, E Kaveeva, D Keeling, A Kirk, M Kočan, RJ Lake, M Lehnen, HJ Leggate, Y Liang, MK Lilley, SW Lisgo, YQ Liu, B Lloyd, GP Maddison, J Mailloux, R Martin, GJ McArdle, KG McClements, B McMillan, C Michael, F Militello, P Molchanov, S Mordijck, T Morgan, AW Morris, DG Muir, E Nardon, V Naulin, G Naylor, AH Nielsen, MR O'Brien, T O'Gorman, S Pamela, FI Parra, A Patel, SD Pinches, MN Price, CM Roach, JR Robinson, M Romanelli, V Rozhansky

Abstract:

New diagnostic, modelling and plant capability on the Mega Ampère Spherical Tokamak (MAST) have delivered important results in key areas for ITER/DEMO and the upcoming MAST Upgrade, a step towards future ST devices on the path to fusion currently under procurement. Micro-stability analysis of the pedestal highlights the potential roles of micro-tearing modes and kinetic ballooning modes for the pedestal formation. Mitigation of edge localized modes (ELM) using resonant magnetic perturbation has been demonstrated for toroidal mode numbers n = 3, 4, 6 with an ELM frequency increase by up to a factor of 9, compatible with pellet fuelling. The peak heat flux of mitigated and natural ELMs follows the same linear trend with ELM energy loss and the first ELM-resolved Ti measurements in the divertor region are shown. Measurements of flow shear and turbulence dynamics during L-H transitions show filaments erupting from the plasma edge whilst the full flow shear is still present. Off-axis neutral beam injection helps to strongly reduce the redistribution of fast-ions due to fishbone modes when compared to on-axis injection. Low-k ion-scale turbulence has been measured in L-mode and compared to global gyro-kinetic simulations. A statistical analysis of principal turbulence time scales shows them to be of comparable magnitude and reasonably correlated with turbulence decorrelation time. Te inside the island of a neoclassical tearing mode allow the analysis of the island evolution without assuming specific models for the heat flux. Other results include the discrepancy of the current profile evolution during the current ramp-up with solutions of the poloidal field diffusion equation, studies of the anomalous Doppler resonance compressional Alfvén eigenmodes, disruption mitigation studies and modelling of the new divertor design for MAST Upgrade. The novel 3D electron Bernstein synthetic imaging shows promising first data sensitive to the edge current profile and flows. © 2013 IAEA, Vienna.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet